Integrable seven-point discrete equations and second-order evolution chains
Teoretičeskaâ i matematičeskaâ fizika, Tome 195 (2018) no. 1, pp. 27-43
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider differential–difference equations defining continuous symmetries for discrete equations on a triangular lattice. We show that a certain combination of continuous flows can be represented as a second-order scalar evolution chain. We illustrate the general construction with a set of examples including an analogue of the elliptic Yamilov chain.
Keywords:
integrability, discrete equation, differential–difference equation, lattice, symmetry.
@article{TMF_2018_195_1_a2,
author = {V. E. Adler},
title = {Integrable seven-point discrete equations and second-order evolution chains},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {27--43},
publisher = {mathdoc},
volume = {195},
number = {1},
year = {2018},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2018_195_1_a2/}
}
V. E. Adler. Integrable seven-point discrete equations and second-order evolution chains. Teoretičeskaâ i matematičeskaâ fizika, Tome 195 (2018) no. 1, pp. 27-43. http://geodesic.mathdoc.fr/item/TMF_2018_195_1_a2/