Integrable seven-point discrete equations and second-order evolution chains
Teoretičeskaâ i matematičeskaâ fizika, Tome 195 (2018) no. 1, pp. 27-43

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider differential–difference equations defining continuous symmetries for discrete equations on a triangular lattice. We show that a certain combination of continuous flows can be represented as a second-order scalar evolution chain. We illustrate the general construction with a set of examples including an analogue of the elliptic Yamilov chain.
Keywords: integrability, discrete equation, differential–difference equation, lattice, symmetry.
@article{TMF_2018_195_1_a2,
     author = {V. E. Adler},
     title = {Integrable seven-point discrete equations and second-order evolution chains},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {27--43},
     publisher = {mathdoc},
     volume = {195},
     number = {1},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2018_195_1_a2/}
}
TY  - JOUR
AU  - V. E. Adler
TI  - Integrable seven-point discrete equations and second-order evolution chains
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2018
SP  - 27
EP  - 43
VL  - 195
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_2018_195_1_a2/
LA  - ru
ID  - TMF_2018_195_1_a2
ER  - 
%0 Journal Article
%A V. E. Adler
%T Integrable seven-point discrete equations and second-order evolution chains
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2018
%P 27-43
%V 195
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_2018_195_1_a2/
%G ru
%F TMF_2018_195_1_a2
V. E. Adler. Integrable seven-point discrete equations and second-order evolution chains. Teoretičeskaâ i matematičeskaâ fizika, Tome 195 (2018) no. 1, pp. 27-43. http://geodesic.mathdoc.fr/item/TMF_2018_195_1_a2/