Thermal quantum discord and super quantum discord teleportation via a two-qubit spin-squeezing model
Teoretičeskaâ i matematičeskaâ fizika, Tome 195 (2018) no. 1, pp. 155-168 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We study thermal quantum correlations (quantum discord and super quantum discord) in a two-spin model in an external magnetic field and obtain relations between them and entanglement. We study their dependence on the magnetic field, the strength of the spin squeezing, and the temperature in detail. One interesting result is that when the entanglement suddenly disappears, quantum correlations still survive. We study thermal quantum teleportation in the framework of this model. The main goal is investigating the possibility of increasing the thermal quantum correlations of a teleported state in the presence of a magnetic field, strength of the spin squeezing, and temperature. We note that teleportation of quantum discord and super quantum discord can be realized over a larger temperature range than teleportation of entanglement. Our results show that quantum discord and super quantum discord can be a suitable measure for controlling quantum teleportation with fidelity. Moreover, the presence of entangled states is unnecessary for the exchange of quantum information.
Keywords: quantum discord, super quantum discord, teleportation, two-spin model.
Mots-clés : entanglement
@article{TMF_2018_195_1_a12,
     author = {S. Ahadpour and F. Mirmasoudi},
     title = {Thermal quantum discord and super quantum discord teleportation via a~two-qubit spin-squeezing model},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {155--168},
     year = {2018},
     volume = {195},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2018_195_1_a12/}
}
TY  - JOUR
AU  - S. Ahadpour
AU  - F. Mirmasoudi
TI  - Thermal quantum discord and super quantum discord teleportation via a two-qubit spin-squeezing model
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2018
SP  - 155
EP  - 168
VL  - 195
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2018_195_1_a12/
LA  - ru
ID  - TMF_2018_195_1_a12
ER  - 
%0 Journal Article
%A S. Ahadpour
%A F. Mirmasoudi
%T Thermal quantum discord and super quantum discord teleportation via a two-qubit spin-squeezing model
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2018
%P 155-168
%V 195
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2018_195_1_a12/
%G ru
%F TMF_2018_195_1_a12
S. Ahadpour; F. Mirmasoudi. Thermal quantum discord and super quantum discord teleportation via a two-qubit spin-squeezing model. Teoretičeskaâ i matematičeskaâ fizika, Tome 195 (2018) no. 1, pp. 155-168. http://geodesic.mathdoc.fr/item/TMF_2018_195_1_a12/

[1] C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels”, Phys. Rev. Lett., 70:13 (1993), 1895–1899 | DOI | Zbl

[2] R. Horodecki, P. Horodecki, M. Horodecki, K. Horodecki, “Quantum entanglement”, Rev. Modern Phys., 81:2 (2009), 865–942 | DOI | MR | Zbl

[3] H. Ollivier, W. H. Zurek, “Quantum discord: a measure of the quantumness of correlations”, Phys. Rev. Lett., 88:1 (2001), 017901, 4 pp. | DOI

[4] W. H. Zurek, “Decoherence, einselection, and the quantum origins of the classical”, Rev. Modern Phys., 75:3 (2003), 715–775 | DOI | MR | Zbl

[5] K. Modi, T. Paterek, W. Son, V. Vedral, M. Williamson, “Unified view of quantum and classical correlations”, Phys. Rev. Lett., 104:8 (2010), 080501, 4 pp. | DOI | MR

[6] V. E. Zobov, “Kvantovye i klassicheskie korrelyatsii v vysokotemperaturnoi dinamike dvukh svyazannykh bolshikh spinov”, TMF, 177:1 (2013), 111–125 | DOI | DOI | MR | Zbl

[7] Y.-S. Kim, J.-C. Lee, O. Kwon, Y.-H. Kim, “Protecting entanglement from decoherence using weak measurement and quantum measurement reversal”, Nature Phys., 8:2 (2012), 117–120 | DOI

[8] C. C. Rulli, M. S. Sarandy, “Global quantum discord in multipartite systems”, Phys. Rev. A., 84:4 (2011), 042109, 6 pp. | DOI

[9] M. Berta, M. Christandl, R. Colbeck, J. M. Renes, R. Renner, “The uncertainty principle in the presence of quantum memory”, Nature Phys., 6:9 (2010), 659–662 | DOI

[10] D. V. Khveshchenko, “Entanglement and decoherence in near-critical qubit chains”, Phys. Rev. B, 68:19 (2003), 193307, 4 pp. | DOI

[11] G. F. Zhang, S. S. Li, “Thermal entanglement in a two-qubit Heisenberg $XXZ$ spin chain under an inhomogeneous magnetic field”, Phys. Rev. A, 72:3 (2005), 034302, 4 pp. | DOI

[12] J.-W. Pan, C. Simon, Č. Brukner, A. Zeilinger, “Entanglement purification for quantum communication”, Nature, 410 (2001), 1067–1070 | DOI

[13] C.-Y. Chen, “Approximate and conditional teleportation of an unknown atomic state with dissipative Jaynes–Cummings model”, Commun. Theor. Phys., 49:2 (2008), 355–358 | DOI

[14] G.-H. Yang, B.-B. Zhang, “Quantum discord behaviors in two qubits spin squeezing model with intrinsic decoherence”, Internat. J. Theor. Phys., 55:5 (2015), 2588–2597 | DOI

[15] G.-H. Yang, “Thermal entanglement properties in two kinds of two-qubit spin squeezing model”, Internat. J. Theor. Phys., 55:7 (2016), 3191–3199 | DOI | MR | Zbl

[16] L. Henderson, V. Vedral, “Classical, quantum and total correlations”, J. Phys. A: Math. Gen., 34:35 (2001), 6899–6905 | DOI | MR | Zbl

[17] B. Groisman, S. Popescu, A. Winter, “Quantum, classical, and total amount of correlations in a quantum state”, Phys. Rev. A, 72:3 (2005), 032317, 11 pp. | DOI | MR

[18] L. Mazzola, J. Piilo, S. Maniscalco, “Sudden transition between classical and quantum decoherence”, Phys. Rev. Lett., 104:20 (2010), 200401, 4 pp. | DOI | MR

[19] X.-Q. Yan, B. Zhang, “Collapse-revival of quantum discord and entanglement”, Ann. Phys., 349 (2014), 350–356 | DOI | MR

[20] S. Luo, “Using measurement-induced disturbance to characterize correlations as classical or quantum”, Phys. Rev. A, 77:2 (2008), 022301, 5 pp. ; S. Wu, U. V. Poulsen, K. Mølmer, “Correlations in local measurements on a quantum state, and complementarity as an explanation of nonclassicality”, Phys. Rev. A, 80:3 (2009), 032319, 11 pp. | DOI | DOI

[21] A. Datta, “Quantum discord between relatively accelerated observers”, Phys. Rev. A, 80:5 (2009), 052304, 5 pp. ; R. Dillenschneider, “Quantum discord and quantum phase transition in spin chains”, Phys. Rev. B, 78:22 (2008), 224413, 7 pp. ; M. S. Sarandy, “Classical correlation and quantum discord in critical systems”, Phys. Rev. A, 80:2 (2009), 022108, 9 pp. ; J. Maziero, L. C. Céleri, R. M. Serra, V. Vedral, “Classical and quantum correlations under decoherence”, Phys. Rev. A, 80:4 (2009), 044102, 4 pp. ; V. Vedral, “The elusive source of quantum speedup”, Found. Phys., 40:8 (2010), 1141–1154, arXiv: 0906.3656 | DOI | DOI | DOI | DOI | DOI

[22] W. H. Zurek, “Einselection and decoherence from an information theory perspective”, Ann. Phys., 9:11–12 (2000), 855–864 | 3.0.CO;2-K class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI

[23] Y. Yao, H.-W. Li, X.-B. Zou, J.-Z. Huang, C.-M. Zhang, Z.-Q. Yin, W. Chen, G.-C. Guo, Z.-F. Han, “Quantum discord in quantum random access codes and its connection to dimension witnesses”, Phys. Rev. A, 86:6 (2012), 062310, 9 pp. | DOI

[24] G. Zhihua, C. Huaixin, Q. Shixian, “Partial correlations in multipartite quantum systems”, Inf. Sci., 289 (2014), 262–272 | DOI | Zbl

[25] U. Singh, A. K. Pati, “Quantum discord with weak measurements”, Ann. Phys., 343 (2014), 141–152 | DOI | MR | Zbl

[26] Y. Aharonov, D. Z. Albert, L. Vaidman, “How the result of a measurement of a component of the spin of a spin-$1/2$ particle can turn out to be 100”, Phys. Rev. Lett., 60:14 (1998), 1351–1354 | DOI

[27] M. Kitagawa, M. Ueda, “Squeezed spin states”, Phys. Rev. A, 47:6 (1993), 5138–5143 | DOI

[28] X. Wang, B. C. Sanders, “Spin squeezing and pairwise entanglement for symmetric multiqubit states”, Phys. Rev. A, 68:1 (2003), 012101, 6 pp. | DOI

[29] R. Wang, G.-H. Yang, “Entanglement teleportation via two-qubit spin squeezing model”, Internat. J. Theor. Phys., 55:2 (2015), 920–926 | DOI

[30] W. K. Wootters, “Entanglement of formation of an arbitrary state of two qubits”, Phys. Rev. Lett., 80:10 (1998), 2245–2248 | DOI | Zbl

[31] M. Ali, A. R. P. Rau, G. Alber, “Quantum discord for two-qubit $X$ states”, Phys. Rev. A, 81:4 (2010), 042105, 7 pp. | DOI

[32] M. Ali, A. R. P. Rau, G. Alber, “Erratum: Quantum discord for two-qubit $X$ states”, Phys. Rev. A, 82:6 (2010), 069902 | DOI

[33] Q. Chen, C. Zhang, S. Yu, X. X. Yi, C. H. Oh, “Quantum discord of two-qubit $X$ states”, Phys. Rev. A, 84:4 (2011), 042313, 5 pp. | DOI

[34] S. M. Aldoshin, E. B. Feldman, M. A. Yurischev, “Kvantovaya zaputannost i kvantovyi diskord v magnitoaktivnykh materialakh”, FNT, 40:1 (2014), 5–21 | DOI

[35] T. Werlang, S. Souza, F. F. Fanchini, C. J. Villas Boas, “Robustness of quantum discord to sudden death”, Phys. Rev. A, 80:2 (2009), 024103, 4 pp. | DOI

[36] B. Liu, B. Shao, J. Zou, “Quantum discord for a central two-qubit system coupled to an $XY$-spin-chain environment”, Phys. Rev. A, 82:6 (2010), 062119, 7 pp. | DOI

[37] R. Jozsa, “Fidelity for mixed quantum states”, J. Modern Opt., 41:12 (1994), 2315–2323 | DOI | MR | Zbl