Quantum gravitational effects on the boundary
Teoretičeskaâ i matematičeskaâ fizika, Tome 195 (2018) no. 1, pp. 130-154 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Quantum gravitational effects might hold the key to some of the outstanding problems in theoretical physics. We analyze the perturbative quantum effects on the boundary of a gravitational system and the Dirichlet boundary condition imposed at the classical level. Our analysis reveals that for a black hole solution, there is a contradiction between the quantum effects and the Dirichlet boundary condition: the black hole solution of the one-particle-irreducible action no longer satisfies the Dirichlet boundary condition as would be expected without going into details. The analysis also suggests that the tension between the Dirichlet boundary condition and loop effects is connected with a certain mechanism of information storage on the boundary.
Keywords: Dirichlet boundary condition, quantum correction
Mots-clés : foliation.
@article{TMF_2018_195_1_a11,
     author = {F. James and I. Y. Park},
     title = {Quantum gravitational effects on the~boundary},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {130--154},
     year = {2018},
     volume = {195},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2018_195_1_a11/}
}
TY  - JOUR
AU  - F. James
AU  - I. Y. Park
TI  - Quantum gravitational effects on the boundary
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2018
SP  - 130
EP  - 154
VL  - 195
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2018_195_1_a11/
LA  - ru
ID  - TMF_2018_195_1_a11
ER  - 
%0 Journal Article
%A F. James
%A I. Y. Park
%T Quantum gravitational effects on the boundary
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2018
%P 130-154
%V 195
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2018_195_1_a11/
%G ru
%F TMF_2018_195_1_a11
F. James; I. Y. Park. Quantum gravitational effects on the boundary. Teoretičeskaâ i matematičeskaâ fizika, Tome 195 (2018) no. 1, pp. 130-154. http://geodesic.mathdoc.fr/item/TMF_2018_195_1_a11/

[1] I. Y. Park, “Quantum ‘violation’ of Dirichlet boundary condition”, Phys. Lett. B, 765 (2017), 260–264, arXiv: 1609.06251 | DOI | MR | Zbl

[2] S. W. Hawking, “Breakdown of predictability in gravitational collapse”, Phys. Rev. D, 14:10 (1976), 2460–2473 | DOI | MR

[3] D. N. Page, “Black hole information”, Proceedings of the 5th Canadian Conference on General Relativity and Relativistic Astrophysics (Waterloo, ON, May 13–15, 1993), eds. R. B. Mann, R. G. McLenaghan, World Sci., Singapore, 1–41, arXiv: hep-th/9305040 | MR

[4] S. D. Mathur, “The fuzzball proposal for black holes: an elementary review”, Fortschr. Phys., 53:7–8 (2005), 793–827, arXiv: hep-th/0502050 | DOI | MR | Zbl

[5] J. Polchinski, “The black hole information problem”, New Frontiers in Fields and Strings (Boulder, Colorado, 1–26, June 2015), eds. J. Polchinski, P. Vieira, O. DeWolfe, World Sci., Singapore, 2017, 353–397, arXiv: 1609.04036 | DOI

[6] I. Y. Park, “Fundamental versus solitonic description of D3 branes”, Phys. Lett. B, 468:3–4 (1999), 213–218, arXiv: hep-th/9907142 | DOI | Zbl

[7] I. Y. Park, “Strong coupling limit of open strings: Born–Infeld analysis”, Phys. Rev. D, 64:8 (2001), 081901, 5 pp., arXiv: hep-th/0106078 | DOI | MR

[8] V. Niarchos, “Open/closed string duality and relativistic fluids”, Phys. Rev. D, 94:2 (2016), 026009, 20 pp., arXiv: 1510.03438 | DOI | MR

[9] G. Grignani, T. Harmark, A. Marini, M. Orselli, “The Born–Infeld/gravity correspondence”, Phys. Rev. D, 94:6 (2016), 066009, 14 pp., arXiv: 1602.01640 | DOI | Zbl

[10] T. Maxfield, S. Sethi, “DBI from gravity”, JHEP, 02 (2017), 108, 25 pp., arXiv: 1612.00427 | DOI | MR

[11] M. Sato, A. Tsuchiya, “Born–Infeld action from supergravity”, Progr. Theor. Phys., 109:4 (2003), 687–707, arXiv: hep-th/0211074 | DOI | Zbl

[12] E. Hatefi, A. J. Nurmagambetov, I. Y. Park, “ADM reduction of IIB on $\mathcal H^{p,q}$ and dS braneworld”, JHEP, 04 (2013), 170, 24 pp., arXiv: 1210.3825 | DOI | MR

[13] I. Y. Park, “Hypersurface foliation approach to renormalization of ADM formulation of gravity”, Eur. Phys. J. C, 75 (2015), 459, 11 pp., arXiv: 1404.5066 | DOI

[14] I. Y. Park, Quantization of gravity through hypersurface foliation, arXiv: 1406.0753

[15] I. Y. Park, “Reduction of gravity–matter and dS gravity to hypersurface”, Internat. J. Geom. Methods Modern Phys., 14:6 (2017), 1750092, 29 pp., arXiv: 1512.08060 | DOI | MR | Zbl

[16] R. Benguria, P. Cordero, C. Teitelboim, “Aspects of the Hamiltonian dynamics of interacting gravitational gauge and Higgs fields with applications to spherical symmetry”, Nucl. Phys. B, 122:1 (1977), 61–99 | DOI

[17] E. Witten, “Quantum field theory and the Jones polynomial”, Commun. Math. Phys., 121:3 (1989), 351–399 | DOI | MR | Zbl

[18] A. P. Balachandran, G. Bimonte, K. S. Gupta, A. Stern, “Conformal edge currents in Chern–Simons theories”, Internat. J. Modern Phys. A, 7:19 (1992), 4655–4670, arXiv: hep-th/9110072 | DOI | MR

[19] L. Smolin, “Linking topological quantum field theory and nonperturbative quantum gravity”, J. Math. Phys., 36:11 (1995), 6417–6455, arXiv: gr-qc/9505028 | DOI | MR | Zbl

[20] C. Krishnan, A. Raju, “A Neumann boundary term for gravity”, Modern Phys. Lett. A, 32:14 (2017), 1750077, 8 pp., arXiv: ; C. Krishnan, K. V. P. Kumar, A. Raju, “An alternate path integral for quantum gravity”, JHEP, 10 (2016), 043, arXiv: ; C. Krishnan, A. Raju, P. N. B. Subramanian, “Dynamical boundary for anti-de Sitter space”, Phys. Rev. D, 94:12 (2016), 126011, 16 pp., arXiv: 1605.016031609.047191609.06300 | DOI | MR | DOI | DOI

[21] L. Lehner, R. C. Myers, E. Poisson, R. D. Sorkin, “Gravitational action with null boundaries”, Phys. Rev. D, 94:8 (2016), 084046, 36 pp., arXiv: 1609.00207 | DOI

[22] L. Freidel, A. Perez, D. Pranzetti, “Loop gravity string”, Phys. Rev. D, 95:10 (2017), 106002, 16 pp., arXiv: 1611.03668 | DOI

[23] W. Donnelly, L. Freidel, “Local subsystems in gauge theory and gravity”, JHEP, 09 (2016), 102, 44 pp., arXiv: 1601.04744 | DOI | MR

[24] K. Murata, S. Kinoshita, N. Tanahashi, “Non-equilibrium condensation process in a holographic superconductor”, JHEP, 07 (2010), 050, arXiv: 1005.0633 | DOI

[25] S. S. Gubser, “Breaking an Abelian gauge symmetry near a black hole horizon”, Phys. Rev. D, 78:6 (2008), 065034, 7 pp., arXiv: 0801.2977 | DOI

[26] S. A. Hartnoll, C. P. Herzog, G. T. Horowitz, “Building a holographic superconductor”, Phys. Rev. Lett., 101:3 (2008), 031601, 4 pp., arXiv: 0803.3295 | DOI

[27] M. J. Bhaseen, J. P. Gauntlett, B. D. Simons, J. Sonner, T. Wiseman, “Holographic superfluids and the dynamics of symmetry breaking”, Phys. Rev. Lett., 110:1 (2013), 015301, 5 pp., arXiv: 1207.4194 | DOI

[28] I. Antoniadis, J. Iliopoulos, T. N. Tomaras, “One loop effective action around de Sitter space”, Nucl. Phys. B, 462:2 (1996), 437–452, arXiv: hep-th/9510112 | DOI | Zbl

[29] I. Y. Park, 4D covariance of holographic quantization of Einstein gravity, arXiv: 1506.08383

[30] C. P. Burgess, C. A. Lütken, “Propagators and effective potentials in anti-de Sitter space”, Phys. Lett. B, 153:3 (1985), 137–141 | DOI | MR

[31] T. Inami, H. Ooguri, “One loop eEffective potential in Anti-de Sitter space”, Progr. Theor. Phys., 73:4 (1985), 1051–1054 | DOI | MR | Zbl

[32] E. D'Hoker, D. Z. Freedman, “Supersymmetric gauge theories and the AdS/CFT correspondence”, Strings, Branes and Extra Dimensions – TASI 2001 (Boulder, Colorado, USA, 4–29 June, 2001), eds. S. S. Gubser, J. D. Lykken, World Sci., Singapore, 2004, arXiv: hep-th/0201253 | DOI | MR

[33] E. D'Hoker, D. Z. Freedman, S. D. Mathur, A. Matusis, L. Rastelli, “Graviton and gauge boson propagators in AdS$(d+1)$”, Nucl. Phys. B, 562:1–2 (1999), 330–352, arXiv: hep-th/9902042 | DOI | MR | Zbl

[34] I. Y. Park, “Holographic quantization of gravity in a black hole background”, J. Math. Phys., 57:2 (2016), 022305, 16 pp., arXiv: 1508.03874 | DOI | MR | Zbl

[35] T. Ortín, Gravity and strings, Cambridge Univ. Press, Cambridge, 2004 | DOI | MR

[36] I. L. Buchbinder, S. D. Odintsov, I. L. Shapiro, Effective Action in Quantum Gravity, Taylor and Francis, New York, 1992 | MR

[37] G. W. Gibbons, S. W. Hawking, “Action integrals and partition functions in quantum gravity”, Phys. Rev. D, 15:10 (1977), 2752–2756 | DOI

[38] N. Deruelle, M. Sasaki, Y. Sendouda, D. Yamauchi, “Hamiltonian formulation of $f$ (Riemann) theories of gravity”, Progr. Theor. Phys., 123:1 (2010), 169–185, arXiv: 0908.0679 | DOI | Zbl

[39] A. Teimouri, S. Talaganis, J. Edholm, A. Mazumdar, “Generalised boundary terms for higher derivative theories of gravity”, JHEP, 08 (2016), 144, 35 pp., arXiv: 1606.01911 | DOI | MR

[40] I. Y. Park, F. James, “On the pattern of black hole information release”, Internat. J. Modern Phys. A, 29:9 (2014), 1450047, 18 pp., arXiv: 1301.6320 | DOI | Zbl

[41] A. Almheiri, D. Marolf, J. Polchinski, J. Sully, “Black holes: complementarity or firewalls?”, JHEP, 02 (2013), 062, 19 pp., arXiv: 1207.3123 | DOI | MR

[42] S. L. Braunstein, S. Pirandola, K. .{Z}yczkowski, “Better late than never: information retrieval from black holes”, Phys. Rev. Lett., 110:10 (2013), 101301, 5 pp., arXiv: 0907.1190 | DOI

[43] S. L. Braunstein, S. Pirandola, Post-firewall paradoxes, arXiv: 1411.7195

[44] I. Y. Park, “Indication for unsmooth horizon induced by quantum gravity interaction”, Eur. Phys. J. C, 74:11 (2014), 3143, 6 pp., arXiv: 1401.1492 | DOI

[45] I. Y. Park, “Dimensional reduction to hypersurface of foliation”, Fortschr. Phys., 62:11–12 (2014), 966–974, arXiv: 1310.2507 | DOI | MR | Zbl

[46] S. B. Giddings, “The boundary $S$ matrix and the AdS to CFT dictionary”, Phys. Rev. Lett., 83:14 (1999), 2707–2710, arXiv: hep-th/9903048 | DOI | Zbl

[47] V. Balasubramanian, S. B. Giddings, A. E. Lawrence, “What do CFTs tell us about anti-de Sitter spacetimes?”, JHEP, 03 (1999), 001, 31 pp., arXiv: hep-th/9902052 | DOI | MR

[48] D. Marolf, I. A. Morrison, M. Srednicki, “Perturbative $S$-matrix for massive scalar fields in global de Sitter space”, Class. Quantum Grav., 30:15 (2013), 155023, 42 pp., arXiv: 1209.6039 | DOI | MR | Zbl