The $k$-essence in the relativistic theory of gravitation and general relativity
Teoretičeskaâ i matematičeskaâ fizika, Tome 194 (2018) no. 3, pp. 510-521 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider a model of a scalar field with a nontrivial kinetic part ($k$-essence) on the background of a flat homogeneous isotropic universe in the framework of the relativistic theory of gravitation and general relativity. Such a scalar field simulates the substance of an ideal fluid and serves as a model of dark energy because it leads to cosmological acceleration at later times. For finding a suitable cosmological scenario, it is more convenient to determine the dependence of the energy density of such a field on the scale factor and only then find the corresponding Lagrangian. Based on the solution of such an inverse problem, we show that in the relativistic theory of gravitation, either any scalar field of this type leads to instabilities, or the compression stage ends at an unacceptably early stage. We note that a consistent model of dark energy in the relativistic theory of gravitation can be a scalar field with a negative potential (ekpyrosis) of Steinhardt–Turok. In general relativity, the $k$-essence model is viable and can represent both dark energy and dark matter. We consider several specific $k$-essence models.
Keywords: RTG, ekpyrosis, Chaplygin gas.
Mots-clés : $k$-essence, inverse
@article{TMF_2018_194_3_a9,
     author = {Yu. V. Chugreev},
     title = {The~$k$-essence in the~relativistic theory of gravitation and general relativity},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {510--521},
     year = {2018},
     volume = {194},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2018_194_3_a9/}
}
TY  - JOUR
AU  - Yu. V. Chugreev
TI  - The $k$-essence in the relativistic theory of gravitation and general relativity
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2018
SP  - 510
EP  - 521
VL  - 194
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2018_194_3_a9/
LA  - ru
ID  - TMF_2018_194_3_a9
ER  - 
%0 Journal Article
%A Yu. V. Chugreev
%T The $k$-essence in the relativistic theory of gravitation and general relativity
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2018
%P 510-521
%V 194
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2018_194_3_a9/
%G ru
%F TMF_2018_194_3_a9
Yu. V. Chugreev. The $k$-essence in the relativistic theory of gravitation and general relativity. Teoretičeskaâ i matematičeskaâ fizika, Tome 194 (2018) no. 3, pp. 510-521. http://geodesic.mathdoc.fr/item/TMF_2018_194_3_a9/

[1] A. A. Logunov, M. A. Mestvirishvili, Yu. V. Chugreev, Massa gravitona i razvitie fridmanovskoi Vselennoi, Izd-vo MGU, M., 1987

[2] Yu. V. Chugreev, “Printsip Makha dlya kosmologicheskikh reshenii v relyativistskoi teorii gravitatsii”, Pisma v EChAYa, 12:2(193) (2015), 281–298 | DOI

[3] M. A. Mestvirishvili, Yu. V. Chugreev, “Fridmanovskaya model evolyutsii Vselennoi v relyativistskoi teorii gravitatsii”, TMF, 80:2 (1989), 305–312 | DOI | MR | Zbl

[4] S. S. Gershtein, A. A. Logunov, M. A. Mestvirishvili, N. P. Tkachenko, “Massa gravitona, kvintessentsiya i ostsilliruyuschii kharakter evolyutsii Vselennoi”, YaF, 67:8 (2004), 1618–1626 | DOI

[5] S. S. Gershtein, A. A. Logunov, M. A. Mestvirishvili, “Kosmologicheskaya postoyannaya i prostranstvo Minkovskogo”, EChAYa, 38:3 (2007), 569–586 | DOI

[6] M. A. Mestvirishvili, K. A. Modestov, Yu. V. Chugreev, “Skalyarnoe pole kvinessentsii v relyativistskoi teorii gravitatsii”, TMF, 152 (2007), 551–560, arXiv: gr-qc/0612105 | DOI | DOI | MR | Zbl

[7] Yu. V. Chugreev, “Temnaya energiya i massa gravitona v Blizhnei Vselennoi”, Pisma v EChAYa, 13:1(199) (2016), 66–79 | DOI

[8] R. J. Sherrer, “Purely kinetic $k$-essence as unified dark matter”, Phys. Rev. Lett., 93:1 (2004), 011301, 4 pp., arXiv: astro-ph/0402316 | DOI

[9] P. J. Steinhardt, N. Turok, “A cyclic model of the Universe”, Science, 296:5572 (2002), 1436–1439, arXiv: hep-th/0111030 | DOI | MR | Zbl

[10] P. J. Steinhardt, N. Turok, “Cosmic evolution in a cyclic universe”, Phys. Rev. D, 65:12 (2002), 126003, 20 pp., arXiv: hep-th/0111098 | DOI

[11] J. K. Erickson, D. H. Wesley, P. J. Steinhardt, N. Turok, “Kasner and mixmaster behavior in universes with equation of state $\omega\ge 1$”, Phys. Rev. D, 69:6 (2004), 063514, 11 pp., arXiv: hep-th/0312009 | DOI | MR

[12] A. Ijjas, P. J. Steinhardt, “Classically stable nonsingular cosmological bounces”, Phys. Rev. Lett., 117:12 (2016), 121304, 5 pp., arXiv: 1606.08880 | DOI | MR

[13] L. P. Chimento, “Extended tachyon field, Chaplygin gas and solvable $k$-essence cosmologies”, Phys. Rev. D, 69:12 (2004), 123517, 10 pp., arXiv: astro-ph/0311613 | DOI | MR

[14] J. Garriaga, V. F. Mukhanov, “Perturbations in $k$-inflation”, Phys. Lett. B, 458:2–3, 219–225, arXiv: hep-th/9904176 | DOI | MR

[15] V. Mukhanov, Physical Foundations of Cosmology, Cambridge Univ. Press, Cambridge, 2012 | DOI | MR

[16] D. S. Gorbunov, V. A. Rubakov, Vvedenie v teoriyu rannei Vselennoi. Teoriya goryachego bolshogo vzryva, Lenand, M., 2016

[17] D. S. Gorbunov, V. A. Rubakov, Vvedenie v teoriyu rannei Vselennoi. Kosmologicheskie vozmuscheniya. Inflyatsionnaya teoriya, Krasand, M., 2016