Mots-clés : grand canonical ensemble
@article{TMF_2018_194_3_a6,
author = {V. V. Ryazanov},
title = {Obtaining the~thermodynamic relations for {the~Gibbs} ensemble using the~maximum entropy method},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {452--467},
year = {2018},
volume = {194},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2018_194_3_a6/}
}
TY - JOUR AU - V. V. Ryazanov TI - Obtaining the thermodynamic relations for the Gibbs ensemble using the maximum entropy method JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2018 SP - 452 EP - 467 VL - 194 IS - 3 UR - http://geodesic.mathdoc.fr/item/TMF_2018_194_3_a6/ LA - ru ID - TMF_2018_194_3_a6 ER -
V. V. Ryazanov. Obtaining the thermodynamic relations for the Gibbs ensemble using the maximum entropy method. Teoretičeskaâ i matematičeskaâ fizika, Tome 194 (2018) no. 3, pp. 452-467. http://geodesic.mathdoc.fr/item/TMF_2018_194_3_a6/
[1] I. I. Ivanchik, “Analiticheskoe predstavlenie uravneniya sostoyaniya v klassicheskoi statisticheskoi mekhanike”, TMF, 108:1 (1996), 135–158 | DOI | DOI | MR | Zbl
[2] E. T. Jaynes, “Information theory and statistical mechanics I.”, Phys. Rev., 106:4 (1957), 620–630 | DOI | MR | Zbl
[3] P. Harremoës, F. Topsøe, “Maximum entropy fundamentals”, Entropy, 3:3 (2001), 191–226 ; L. M. Martyushev, V. D. Seleznev, “Maximum entropy production principle in physics, chemistry and biology”, Phys. Rep., 426:1 (2006), 1–45 | DOI | MR | DOI | MR
[4] N. N. Bogolyubov, Problemy dinamicheskoi teorii v statisticheskoi fizike, Gostekhizdat, M., 1946 | MR
[5] N. N. Bogolyubov (ml.), A. K. Prikarpatskii, “Metod proizvodyaschikh funktsionalov N. N. Bogolyubova v statisticheskoi mekhanike i analog preobrazovaniya k kollektivnym peremennym”, TMF, 66:3 (1986), 463–480 | DOI | MR
[6] B. V. Moschinskii, K. Rodriges, V. K. Fedyanin, “Proizvodyaschii funktsional i funktsionalnyi analog variatsionnogo metoda Bogolyubova”, TMF, 45:2 (1980), 251–260 | DOI | MR
[7] G. I. Nazin, “Metod proizvodyaschego funktsionala”, Itogi nauki i tekhn. Ser. Teor. veroyatn. Matem. stat. Teor. kibernet., 22 (1984), 159–201 | DOI | MR | Zbl
[8] G. I. Nazin, “Opisanie gibbsovskikh sluchainykh polei metodom proizvodyaschego funktsionala”, TMF, 42:3 (1980), 383–391 | DOI | MR
[9] V. V. Krivolapova, G. I. Nazin, “Metod proizvodyaschego funktsionala i gibbsovskie sluchainye polya na schetnykh mnozhestvakh”, TMF, 47:3 (1981), 362–374 | DOI | MR
[10] V. V. Ryazanov, “Postroenie korrelyatsionnykh funktsii slozhnoi statisticheskoi sistemy”, Izv. vuzov SSSR. Fizika, 11 (1978), 129–130
[11] V. V. Ryazanov, “Modeli proizvodyaschego funktsionala statisticheskoi sistemy v oblasti fazovogo perekhoda”, Izv. vuzov SSSR. Fizika, 9 (1983), 44–47
[12] B. A. Sevastyanov, Vetvyaschiesya protsessy, Nauka, M., 1971 | MR
[13] I. N. Kovalenko, N. Yu. Kuznetsov, V. M. Shurenkov, Sluchainye protsessy. Spravochnik, Naukova dumka, Kiev, 1983 | MR
[14] V. V. Ryazanov, “Modelirovanie uravneniya sostoyaniya peresyschennogo para i zavisimosti ego ravnovesnogo davleniya ot radiusa zarodyshevoi kapli”, Zhurn. fiz. khimii, 58:1 (1984), 72–74
[15] V. V. Ryazanov, “Poluchenie razlichnykh uravnenii sostoyaniya veschestva pri pomoschi zadaniya mery Levi obobschennogo puassonovskogo raspredeleniya”, Teplofizika vysokikh temperatur, 21:6 (1983), 1099–1105
[16] V. V. Ryazanov, “Modelirovanie proizvodyaschei funktsii dlya chisla chastits vetvyaschimsya protsessom s immigratsiei”, Fizika zhidkogo sostoyaniya, Vyp. 11, Vischa shkola, Kiev, 1983, 40–44; Вып. 17, 1989; Вып. 18, 1990; Вып. 19, 1991; В. В. Рязанов, О. К. Закусило, Вып. 12, 1984
[17] R. L. Dobrushin, “O zakone Puassona dlya raspredeleniya chastits v prostranstve”, Ukrain. matem. zhurn., 8:2 (1956), 127–134 | Zbl
[18] R. L. Dobrushin, Yu. M. Sukhov, “Vremennaya asimptotika dlya nekotorykh vyrozhdennykh modelei evolyutsii sistem s beskonechnym chislom chastits”, Itogi nauki i tekhn. Ser. Sovrem. probl. matem., 14, 1979, 147–254 | MR | Zbl
[19] Yu. M. Sukhov, “Skhodimost k puassonovskomu raspredeleniyu dlya nekotorykh modelei dvizheniya chastits”, Izv. AN SSSR. Ser. matem., 46:1 (1982), 135–154 | DOI | MR | Zbl
[20] A. L. Rebenko, “Poisson measure representation and cluster expansion in classical mechanics”, Commun. Math. Phys., 151:2 (1993), 427–435 | DOI | MR | Zbl
[21] D. J. Daley, D. Vere-Jones, An Introduction to the Theory of Point Processes, v. I, Elementary Theory and Methods, Springer, New York, Berlin, Heidelberg, 2002 | DOI | MR
[22] R. A. Minlos, “Lektsii po statisticheskoi fizike”, UMN, 23:1(139) (1968), 133–190 | DOI | MR | Zbl
[23] O. L. Rebenko, V. A. Bolukh, “Neskinchennovimirnii analiz i statistichna mekhanika”, Zb{i}rnik prats In-tu matematiki NAN Ukra\"{i}ni, 11:1 (2014), 281–339
[24] D. L. Finkelshtein, Y. G. Kondratiev, M. J. Oliveira, “Glauber dynamics in the continuum via generating functionals evolution”, Complex Anal. Oper. Theory, 6:4 (2011), 923–945 | DOI | MR
[25] V. A. Boluh, O. L. Rebenko, “An exponential representation for some integrals with respect to Lebesgue–Poisson measure”, Methods Funct. Anal. Topol., 20:2 (2014), 186–192 | MR | Zbl
[26] D. Finkelshtein, “Stokhastichni dinamiki neperervnikh sistem”, Mizhdistsiplinarni doslidzhennya skladnikh sistem, 6 (2015), 5–48
[27] O. E. Lanford III, “Time evolution of large classical systems”, Dynamical Systems, Theory and Applications, Lecture Notes in Physics, 38, ed. J. Moser, Springer, Berlin, Heidelberg, 1975, 1–111 | DOI | MR | MR | Zbl
[28] D. Ruelle, “Superstable interactions in classical statistical mechanics”, Commun. Math. Phys., 18:2 (1970), 127–159 | DOI | MR | Zbl
[29] A. L. Rebenko, “Cell gas model of classical statistical systems”, Rew. Math. Phys., 25:4 (2013), 1330006, 28 pp. | DOI | MR | Zbl
[30] A. L. Rebenko, M. V. Tertychnyi, “On stability, superstability and strong superstability of classical systems of statistical mechanics”, Meth. Funct. Anal. Topology, 14:3 (2008), 287–296 | MR | Zbl
[31] K. Preston, Gibbsovskie sostoyaniya na schetnykh mnozhestvakh, Mir, M., 1977 | MR
[32] H.-O. Georgii, Canonical Gibbs measure, Lecture Notes in Mathematical Physics, 760, Springer, Berlin, 1979 ; Х.-О. Георги, Гиббсовские меры и фазовые переходы, М., Мир, 1992 | DOI | MR | MR | Zbl
[33] T. Khill, Statisticheskaya mekhanika, IL, M., 1960 | MR | Zbl
[34] Dzh. Maier, M. Geppert-Maier, Statisticheskaya mekhanika, Mir, M., 1980 | MR
[35] S. Albeverio, Yu. G. Kondratiev, M. Röckner, “Analysis and geometry on configuration spaces: the Gibbsian case”, J. Funct. Anal., 157:1 (1998), 242–291 | DOI | MR | Zbl
[36] Y. G. Kondratiev, J. L. Silva, L. Streit, “Differential geometry on compound Poisson space”, Methods Funct. Anal. Topology, 4:1 (1998), 32-58, arXiv: math/9908059 | MR
[37] A. M. Vershik, I. M. Gelfand, M. I. Graev, “Predstavleniya gruppy diffeomorfizmov”, UMN, 30:6(186) (1975), 3–50 | DOI | MR | Zbl
[38] V. I. Tikhonov, M. A. Mironov, Markovskie protsessy, Sovetskoe radio, M., 1977 | MR