Obtaining the thermodynamic relations for the Gibbs ensemble using the maximum entropy method
Teoretičeskaâ i matematičeskaâ fizika, Tome 194 (2018) no. 3, pp. 452-467 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

As a generating functional of the Gibbs ensemble, we use the Laplace transform of the complex (or generalized) Poisson measure. We use the maximum entropy principle to determine the form of the generating function of this distribution. We consider the cases where only the mathematical expectation is known and where the mathematical expectation and the second moment are known. In the latter case, the equation of state has a transcendental form. In the both cases, if there is no interaction, then the obtained relations lead to expressions for an ideal gas.
Keywords: Gibbs system, generalized Poisson distribution, maximum entropy principle.
Mots-clés : grand canonical ensemble
@article{TMF_2018_194_3_a6,
     author = {V. V. Ryazanov},
     title = {Obtaining the~thermodynamic relations for {the~Gibbs} ensemble using the~maximum entropy method},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {452--467},
     year = {2018},
     volume = {194},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2018_194_3_a6/}
}
TY  - JOUR
AU  - V. V. Ryazanov
TI  - Obtaining the thermodynamic relations for the Gibbs ensemble using the maximum entropy method
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2018
SP  - 452
EP  - 467
VL  - 194
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2018_194_3_a6/
LA  - ru
ID  - TMF_2018_194_3_a6
ER  - 
%0 Journal Article
%A V. V. Ryazanov
%T Obtaining the thermodynamic relations for the Gibbs ensemble using the maximum entropy method
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2018
%P 452-467
%V 194
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2018_194_3_a6/
%G ru
%F TMF_2018_194_3_a6
V. V. Ryazanov. Obtaining the thermodynamic relations for the Gibbs ensemble using the maximum entropy method. Teoretičeskaâ i matematičeskaâ fizika, Tome 194 (2018) no. 3, pp. 452-467. http://geodesic.mathdoc.fr/item/TMF_2018_194_3_a6/

[1] I. I. Ivanchik, “Analiticheskoe predstavlenie uravneniya sostoyaniya v klassicheskoi statisticheskoi mekhanike”, TMF, 108:1 (1996), 135–158 | DOI | DOI | MR | Zbl

[2] E. T. Jaynes, “Information theory and statistical mechanics I.”, Phys. Rev., 106:4 (1957), 620–630 | DOI | MR | Zbl

[3] P. Harremoës, F. Topsøe, “Maximum entropy fundamentals”, Entropy, 3:3 (2001), 191–226 ; L. M. Martyushev, V. D. Seleznev, “Maximum entropy production principle in physics, chemistry and biology”, Phys. Rep., 426:1 (2006), 1–45 | DOI | MR | DOI | MR

[4] N. N. Bogolyubov, Problemy dinamicheskoi teorii v statisticheskoi fizike, Gostekhizdat, M., 1946 | MR

[5] N. N. Bogolyubov (ml.), A. K. Prikarpatskii, “Metod proizvodyaschikh funktsionalov N. N. Bogolyubova v statisticheskoi mekhanike i analog preobrazovaniya k kollektivnym peremennym”, TMF, 66:3 (1986), 463–480 | DOI | MR

[6] B. V. Moschinskii, K. Rodriges, V. K. Fedyanin, “Proizvodyaschii funktsional i funktsionalnyi analog variatsionnogo metoda Bogolyubova”, TMF, 45:2 (1980), 251–260 | DOI | MR

[7] G. I. Nazin, “Metod proizvodyaschego funktsionala”, Itogi nauki i tekhn. Ser. Teor. veroyatn. Matem. stat. Teor. kibernet., 22 (1984), 159–201 | DOI | MR | Zbl

[8] G. I. Nazin, “Opisanie gibbsovskikh sluchainykh polei metodom proizvodyaschego funktsionala”, TMF, 42:3 (1980), 383–391 | DOI | MR

[9] V. V. Krivolapova, G. I. Nazin, “Metod proizvodyaschego funktsionala i gibbsovskie sluchainye polya na schetnykh mnozhestvakh”, TMF, 47:3 (1981), 362–374 | DOI | MR

[10] V. V. Ryazanov, “Postroenie korrelyatsionnykh funktsii slozhnoi statisticheskoi sistemy”, Izv. vuzov SSSR. Fizika, 11 (1978), 129–130

[11] V. V. Ryazanov, “Modeli proizvodyaschego funktsionala statisticheskoi sistemy v oblasti fazovogo perekhoda”, Izv. vuzov SSSR. Fizika, 9 (1983), 44–47

[12] B. A. Sevastyanov, Vetvyaschiesya protsessy, Nauka, M., 1971 | MR

[13] I. N. Kovalenko, N. Yu. Kuznetsov, V. M. Shurenkov, Sluchainye protsessy. Spravochnik, Naukova dumka, Kiev, 1983 | MR

[14] V. V. Ryazanov, “Modelirovanie uravneniya sostoyaniya peresyschennogo para i zavisimosti ego ravnovesnogo davleniya ot radiusa zarodyshevoi kapli”, Zhurn. fiz. khimii, 58:1 (1984), 72–74

[15] V. V. Ryazanov, “Poluchenie razlichnykh uravnenii sostoyaniya veschestva pri pomoschi zadaniya mery Levi obobschennogo puassonovskogo raspredeleniya”, Teplofizika vysokikh temperatur, 21:6 (1983), 1099–1105

[16] V. V. Ryazanov, “Modelirovanie proizvodyaschei funktsii dlya chisla chastits vetvyaschimsya protsessom s immigratsiei”, Fizika zhidkogo sostoyaniya, Vyp. 11, Vischa shkola, Kiev, 1983, 40–44; Вып. 17, 1989; Вып. 18, 1990; Вып. 19, 1991; В. В. Рязанов, О. К. Закусило, Вып. 12, 1984

[17] R. L. Dobrushin, “O zakone Puassona dlya raspredeleniya chastits v prostranstve”, Ukrain. matem. zhurn., 8:2 (1956), 127–134 | Zbl

[18] R. L. Dobrushin, Yu. M. Sukhov, “Vremennaya asimptotika dlya nekotorykh vyrozhdennykh modelei evolyutsii sistem s beskonechnym chislom chastits”, Itogi nauki i tekhn. Ser. Sovrem. probl. matem., 14, 1979, 147–254 | MR | Zbl

[19] Yu. M. Sukhov, “Skhodimost k puassonovskomu raspredeleniyu dlya nekotorykh modelei dvizheniya chastits”, Izv. AN SSSR. Ser. matem., 46:1 (1982), 135–154 | DOI | MR | Zbl

[20] A. L. Rebenko, “Poisson measure representation and cluster expansion in classical mechanics”, Commun. Math. Phys., 151:2 (1993), 427–435 | DOI | MR | Zbl

[21] D. J. Daley, D. Vere-Jones, An Introduction to the Theory of Point Processes, v. I, Elementary Theory and Methods, Springer, New York, Berlin, Heidelberg, 2002 | DOI | MR

[22] R. A. Minlos, “Lektsii po statisticheskoi fizike”, UMN, 23:1(139) (1968), 133–190 | DOI | MR | Zbl

[23] O. L. Rebenko, V. A. Bolukh, “Neskinchennovimirnii analiz i statistichna mekhanika”, Zb{i}rnik prats In-tu matematiki NAN Ukra\"{i}ni, 11:1 (2014), 281–339

[24] D. L. Finkelshtein, Y. G. Kondratiev, M. J. Oliveira, “Glauber dynamics in the continuum via generating functionals evolution”, Complex Anal. Oper. Theory, 6:4 (2011), 923–945 | DOI | MR

[25] V. A. Boluh, O. L. Rebenko, “An exponential representation for some integrals with respect to Lebesgue–Poisson measure”, Methods Funct. Anal. Topol., 20:2 (2014), 186–192 | MR | Zbl

[26] D. Finkelshtein, “Stokhastichni dinamiki neperervnikh sistem”, Mizhdistsiplinarni doslidzhennya skladnikh sistem, 6 (2015), 5–48

[27] O. E. Lanford III, “Time evolution of large classical systems”, Dynamical Systems, Theory and Applications, Lecture Notes in Physics, 38, ed. J. Moser, Springer, Berlin, Heidelberg, 1975, 1–111 | DOI | MR | MR | Zbl

[28] D. Ruelle, “Superstable interactions in classical statistical mechanics”, Commun. Math. Phys., 18:2 (1970), 127–159 | DOI | MR | Zbl

[29] A. L. Rebenko, “Cell gas model of classical statistical systems”, Rew. Math. Phys., 25:4 (2013), 1330006, 28 pp. | DOI | MR | Zbl

[30] A. L. Rebenko, M. V. Tertychnyi, “On stability, superstability and strong superstability of classical systems of statistical mechanics”, Meth. Funct. Anal. Topology, 14:3 (2008), 287–296 | MR | Zbl

[31] K. Preston, Gibbsovskie sostoyaniya na schetnykh mnozhestvakh, Mir, M., 1977 | MR

[32] H.-O. Georgii, Canonical Gibbs measure, Lecture Notes in Mathematical Physics, 760, Springer, Berlin, 1979 ; Х.-О. Георги, Гиббсовские меры и фазовые переходы, М., Мир, 1992 | DOI | MR | MR | Zbl

[33] T. Khill, Statisticheskaya mekhanika, IL, M., 1960 | MR | Zbl

[34] Dzh. Maier, M. Geppert-Maier, Statisticheskaya mekhanika, Mir, M., 1980 | MR

[35] S. Albeverio, Yu. G. Kondratiev, M. Röckner, “Analysis and geometry on configuration spaces: the Gibbsian case”, J. Funct. Anal., 157:1 (1998), 242–291 | DOI | MR | Zbl

[36] Y. G. Kondratiev, J. L. Silva, L. Streit, “Differential geometry on compound Poisson space”, Methods Funct. Anal. Topology, 4:1 (1998), 32-58, arXiv: math/9908059 | MR

[37] A. M. Vershik, I. M. Gelfand, M. I. Graev, “Predstavleniya gruppy diffeomorfizmov”, UMN, 30:6(186) (1975), 3–50 | DOI | MR | Zbl

[38] V. I. Tikhonov, M. A. Mironov, Markovskie protsessy, Sovetskoe radio, M., 1977 | MR