Zone structure of the renormalization group flow in a fermionic hierarchical model
Teoretičeskaâ i matematičeskaâ fizika, Tome 194 (2018) no. 3, pp. 436-444 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The Gaussian part of the Hamiltonian of the four-component fermion model on a hierarchical lattice is invariant under the block-spin transformation of the renormalization group with a given degree of normalization (the renormalization group parameter). We describe the renormalization group transformation in the space of coefficients defining the Grassmann-valued density of a free measure as a homogeneous quadratic map. We interpret this space as a two-dimensional projective space and visualize it as a disk. If the renormalization group parameter is greater than the lattice dimension, then the unique attractive fixed point of the renormalization group is given by the density of the Grassmann delta function. This fixed point has two different (left and right) invariant neighborhoods. Based on this, we classify the points of the projective plane according to how they tend to the attracting point (on the left or right) under iterations of the map. We discuss the zone structure of the obtained regions and show that the global flow of the renormalization group is described simply in terms of this zone structure.
Keywords: renormalization group, projective space
Mots-clés : fermion model, zone structure.
@article{TMF_2018_194_3_a4,
     author = {M. D. Missarov and A. F. Shamsutdinov},
     title = {Zone structure of the~renormalization group flow in a~fermionic hierarchical model},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {436--444},
     year = {2018},
     volume = {194},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2018_194_3_a4/}
}
TY  - JOUR
AU  - M. D. Missarov
AU  - A. F. Shamsutdinov
TI  - Zone structure of the renormalization group flow in a fermionic hierarchical model
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2018
SP  - 436
EP  - 444
VL  - 194
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2018_194_3_a4/
LA  - ru
ID  - TMF_2018_194_3_a4
ER  - 
%0 Journal Article
%A M. D. Missarov
%A A. F. Shamsutdinov
%T Zone structure of the renormalization group flow in a fermionic hierarchical model
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2018
%P 436-444
%V 194
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2018_194_3_a4/
%G ru
%F TMF_2018_194_3_a4
M. D. Missarov; A. F. Shamsutdinov. Zone structure of the renormalization group flow in a fermionic hierarchical model. Teoretičeskaâ i matematičeskaâ fizika, Tome 194 (2018) no. 3, pp. 436-444. http://geodesic.mathdoc.fr/item/TMF_2018_194_3_a4/

[1] E. Yu. Lerner, M. D. Missarov, “Fixed points of renormalization group for the hierarchical fermionic model”, J. Statist. Phys., 76:3–4 (1994), 805–817 | DOI | MR | Zbl

[2] M. D. Missarov, “RG-invariantnye krivye v fermionnoi ierarkhicheskoi modeli”, TMF, 114:3 (1998), 323–336 | DOI | DOI | Zbl

[3] M. D. Missarov, “Kriticheskie yavleniya v fermionnoi ierarkhicheskoi modeli”, TMF, 117:3 (1998), 471–488 | DOI | DOI | Zbl

[4] M. D. Missarov, “Dynamical phenomena in the hierarchical fermionic model”, Phys. Lett. A, 253:1–2 (1999), 41–46 | DOI

[5] M. D. Missarov, “Renormalization group solution of fermionic Dyson model”, Asymptotic Combinatorics with Application to Mathematical Physics (NATO Advanced Study Institute, St. Petersburg, Russia, July 9–22, 2001), NATO Science Series II: Mathematics, Physics and Chemistry, 77, eds. V. A. Malyshev, A. M. Vershik, Kluwer, Dordrecht, 2002, 151–166 | MR | Zbl

[6] M. D. Missarov, “Nepreryvnyi predel v fermionnoi ierarkhicheskoi modeli”, TMF, 1999, no. 1, 40–50 | DOI | DOI | MR | Zbl

[7] P. M. Bleher, Ja. G. Sinai, “Investigation of the critical point in models of the type of Dyson's hierarchical models”, Commun. Math. Phys., 33:1 (1973), 23–42 | DOI | MR

[8] Ya. G. Sinai, Teoriya fazovykh perekhodov, Nauka, M., 1980 | MR | MR | Zbl

[9] P. Collet, J.-P. Eckmann, A Renormalization Group Analysis of the Hierarchical Model in Statistical Mechanics, v. 74, Lecture Notes in Physics, Springer, Berlin, 1978 | MR

[10] V. S. Vladimirov, I. V. Volovich, E. I. Zelenov, $p$-Adicheskii analiz i matematicheskaya fizika, Fizmatlit, M., 1994 | MR

[11] B. Dragovich, A. Yu. Khrennikov, S. V. Kozyrev, I. V. Volovich, “On $p$-adic mathematical physics”, $p$-Adic Numbers Ultrametric Anal. Appl., 1:1 (2009), 1–17 | DOI

[12] M. D. Missarov, “Renormalizatsionnaya gruppa v fermionnoi ierarkhicheskoi modeli v proektivnykh koordinatakh”, TMF, 173:3 (2012), 355–362 | DOI | DOI | MR

[13] M. D. Missarov, A. F. Shamsutdinov, “Algoritm issledovaniya dinamiki renormalizatsionnoi gruppy v proektivnom prostranstve”, Tr. MIAN, 285 (2014), 221–231 | DOI | DOI

[14] M. D. Missarov, “$p$-Adic renormalization group solutions and the Euclidean renormalization group conjectures”, $p$-Adic Numbers Ultrametric Anal. Appl., 4:2 (2012), 109–114 | DOI | MR | Zbl