Darboux transformation for a semidiscrete short-pulse equation
Teoretičeskaâ i matematičeskaâ fizika, Tome 194 (2018) no. 3, pp. 418-435 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We define a Darboux transformation in terms of a quasideterminant Darboux matrix on the solutions of a semidiscrete short-pulse equation. We also give a quasideterminant formula for $N$-loop soliton solutions and obtain a general expression for the multiloop solution expressed in terms of quasideterminants. Using quasideterminants properties, we find explicit solutions and as an example compute one- and two-loop soliton solutions in explicit form.
Keywords: discrete integrable system, quasideterminant.
Mots-clés : soliton, Darboux transformation
@article{TMF_2018_194_3_a3,
     author = {H. Wajahat A. Riaz and M. Hassan},
     title = {Darboux transformation for a~semidiscrete short-pulse equation},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {418--435},
     year = {2018},
     volume = {194},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2018_194_3_a3/}
}
TY  - JOUR
AU  - H. Wajahat A. Riaz
AU  - M. Hassan
TI  - Darboux transformation for a semidiscrete short-pulse equation
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2018
SP  - 418
EP  - 435
VL  - 194
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2018_194_3_a3/
LA  - ru
ID  - TMF_2018_194_3_a3
ER  - 
%0 Journal Article
%A H. Wajahat A. Riaz
%A M. Hassan
%T Darboux transformation for a semidiscrete short-pulse equation
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2018
%P 418-435
%V 194
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2018_194_3_a3/
%G ru
%F TMF_2018_194_3_a3
H. Wajahat A. Riaz; M. Hassan. Darboux transformation for a semidiscrete short-pulse equation. Teoretičeskaâ i matematičeskaâ fizika, Tome 194 (2018) no. 3, pp. 418-435. http://geodesic.mathdoc.fr/item/TMF_2018_194_3_a3/

[1] B. Grammaticos, T. Tamizhmani, Y. Kosmann-Schwarzbach (eds.), Discrete Integrable Systems (Pondicherry, February 2–14, 2003), Lecture Notes in Physics, 644, Springer, Berlin, 2004 | DOI | MR

[2] Y. B. Suris, The Problem of Integrable Discretization: Hamiltonian Approach, Progress in Mathematics, 219, Birkhäuser, Basel, 2003 | DOI | MR

[3] M. J. Ablowitz, J. F. Ladik, “Nonlinear differential-difference equations and Fourier analysis”, J. Math. Phys., 17:6 (1976), 1011–1018 | DOI | MR

[4] M. J. Ablowitz, J. F. Ladik, “A nonlinear difference scheme and inverse scattering”, Stud. Appl. Math., 55:3 (1976), 213–229 | DOI | MR

[5] R. Hirota, “Nonlinear partial difference equations. I. A difference analogue of the Korteweg-de Vries equation”, J. Phys. Soc. Japan, 43:4 (1977), 1424–1433 | DOI | MR

[6] R. Hirota, “Nonlinear partial difference equations. II. Discrete-time Toda equation”, J. Phys. Soc. Japan, 43:6 (1977), 2074–2078 | DOI | MR

[7] B. F. Feng, K. Maruno, Y. Ohta, “Integrable discretizations of the short pulse equation”, J. Phys. A: Math. Theor., 43:8 (2010), 085203, 14 pp. | DOI | MR

[8] B.-F. Feng, K. Maruno, Y. Ohta, “Self-adaptive moving mesh schemes for short pulse type equations and their Lax pairs”, Pac. J. Math. Ind., 6 (2014), 8, 14 pp. | DOI | MR

[9] T. Schäfer, C. E. Wayne, “Propagation of ultra-short optical pulses in cubic nonlinear media”, Phys. D, 196:1–2 (2004), 90–105 | DOI | MR

[10] Y. Chung, C. K. T. Jones, T. Schäfer, C. E. Wayne, “Ultra-short pulses in linear and nonlinear media”, Nonlinearity, 18:3 (2005), 1351–1374 | DOI | MR

[11] A. Sakovich, S. Sakovich, “The short pulse equation is integrable”, J. Phys. Soc. Japan, 74:1 (2005), 239–241 | DOI

[12] A. Sakovich, S. Sakovich, “Solitary wave solutions of the short pulse equation”, J. Phys. A: Math. Gen., 39:22 (2006), L361–L367 | DOI | MR

[13] B.-F. Feng, J. Inoguchi, K. Kajiwara, K. Maruno, Y. Ohta, “Discrete integrable systems and hodograph transformations arising from motions of discrete plane curves”, J. Phys. A: Math. Theor., 44:39 (2011), 395201, 19 pp. | DOI | MR

[14] V. K. Kuetche, T. B. Bouetou, T. C. Kofane, “On two-loop soliton solution of the Schäfer–Wayne short-pulse equation using Hirota's method and Hodnett–Moloney approach”, J. Phys. Soc. Japan, 76:2 (2007), 024004, 7 pp. | DOI

[15] Y. Matsuno, “Multiloop soliton and multibreather solutions of the short pulse model equation”, J. Phys. Soc. Japan, 76:8 (2007), 084003, 6 pp. | DOI

[16] U. Saleem, M. Hassan, “Darboux transformation and multisoliton solutions of the short pulse equation”, J. Phys. Soc. Japan, 81:9 (2012), 094008, 9 pp. | DOI

[17] L. Ling, B.-F. Feng, Z. Zhu, “Multi-soliton, multi-breather and higher order rogue wave solutions to the complex short pulse equation”, Phys. D, 327 (2016), 13–29 | DOI | MR | Zbl

[18] H. Wajahat A. Riaz, M. ul Hassan, “Darboux transformation of a semi-discrete coupled dispersionless integrable system”, Commun. Nonlinear Sci. Numer. Simul., 48 (2017), 387–397 | DOI | MR

[19] V. B. Matveev, M. A. Salle, Darboux Transformations and Solitons, Springer, Berlin, 1991 | MR

[20] M. Hassan, “Darboux transformation of the generalized coupled dispersionless integrable system”, J. Phys. A: Math. Theor., 42:6 (2009), 065203, 11 pp. | DOI | MR

[21] I. M. Gelfand, V. S. Retakh, “Determinanty matrits nad nekommutativnymi koltsami”, Funkts. analiz i ego pril., 25:2 (1991), 13–25 | DOI | MR | Zbl

[22] I. M. Gelfand, S. Gelfand, V. M. Retakh, R. L. Wilson, “Quasideterminants”, Adv. Math., 193:1 (2005), 56–141 | DOI | MR

[23] C. X. Li, J. J. C. Nimmo, “Quasideterminant solutions of a non-Abelian Toda lattice and kink solutions of a matrix sine-Gordon equation”, Proc. Roy. Soc. London Ser. A, 464:2092 (2008), 951–966, arXiv: 0711.2594 | DOI | MR