Solution blowup for nonlinear equations of the Khokhlov–Zabolotskaya type
Teoretičeskaâ i matematičeskaâ fizika, Tome 194 (2018) no. 3, pp. 403-417 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider several nonlinear evolution equations sharing a nonlinearity of the form $\partial^2\!u^2/\partial t^2$. Such a nonlinearity is present in the Khokhlov–Zabolotskaya equation, in other equations in the theory of nonlinear waves in a fluid, and also in equations in the theory of electromagnetic waves and ion–sound waves in a plasma. We consider sufficient conditions for a blowup regime to arise and find initial functions for which a solution understood in the classical sense is totally absent, even locally in time, i.e., we study the problem of an instantaneous blowup of classical solutions.
Keywords: finite-time blowup, nonlinear wave, instantaneous blowup.
@article{TMF_2018_194_3_a2,
     author = {M. O. Korpusov},
     title = {Solution blowup for nonlinear equations of {the~Khokhlov{\textendash}Zabolotskaya} type},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {403--417},
     year = {2018},
     volume = {194},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2018_194_3_a2/}
}
TY  - JOUR
AU  - M. O. Korpusov
TI  - Solution blowup for nonlinear equations of the Khokhlov–Zabolotskaya type
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2018
SP  - 403
EP  - 417
VL  - 194
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2018_194_3_a2/
LA  - ru
ID  - TMF_2018_194_3_a2
ER  - 
%0 Journal Article
%A M. O. Korpusov
%T Solution blowup for nonlinear equations of the Khokhlov–Zabolotskaya type
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2018
%P 403-417
%V 194
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2018_194_3_a2/
%G ru
%F TMF_2018_194_3_a2
M. O. Korpusov. Solution blowup for nonlinear equations of the Khokhlov–Zabolotskaya type. Teoretičeskaâ i matematičeskaâ fizika, Tome 194 (2018) no. 3, pp. 403-417. http://geodesic.mathdoc.fr/item/TMF_2018_194_3_a2/

[1] S. N. Gurbatov, O. V. Rudenko, A. I. Saichev, Volny i struktury v nelineinykh sredakh bez dispersii. Prilozheniya k nelineinoi akustike, Fizmatlit, M., 2008 | MR | Zbl

[2] M. B. Vinogradova, O. V. Rudenko, A. P. Sukhorukov, Teoriya voln, Nauka, M., 1990 | MR | Zbl

[3] N. S. Bakhvalov, Ya. M. Zhileikin, E. A. Zabolotskaya, Nelineinaya teoriya zvukovykh puchkov, Sovremennye problemy fiziki, Nauka, M., 1982 | MR

[4] S. A. Gabov, Novye zadachi matematicheskoi teorii voln, Nauka, M., 1998

[5] E. Mitidieri, S. I. Pokhozhaev, “Otsutstvie slabykh reshenii dlya nekotorykh vyrozhdennykh i singulyarnykh giperbolicheskikh zadach v $\mathbb R_+^{n+1}$”, Tr. MIAN, 232 (2001), 248–267 | MR | Zbl

[6] M. O. Korpusov, S. G. Mikhailenko, “Mgnovennoe razrushenie klassicheskikh reshenii zadachi Koshi dlya uravneniya Khokhlova–Zabolotskoi”, Zh. vychisl. matem. i matem. fiz., 57:7 (2017), 1170–1175 | DOI | DOI

[7] M. O. Korpusov, “Kriticheskie pokazateli mgnovennogo razrusheniya ili lokalnoi razreshimosti nelineinykh uravnenii sobolevskogo tipa”, Izv. RAN. Ser. matem., 79:5 (2015), 103–162 | DOI | DOI | MR