An approach to modeling artificial gene networks
Teoretičeskaâ i matematičeskaâ fizika, Tome 194 (2018) no. 3, pp. 547-568 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We propose a new mathematical model of a repressilator, i.e., the simplest gene ring network consisting of three elements. The studied model is a three-dimensional system of ordinary differential equations depending on a single parameter. We study the existence and stability problems for relaxation periodic motion in this system.
Keywords: repressilator, gene network, relaxation cycle, asymptotic behavior, stability.
@article{TMF_2018_194_3_a11,
     author = {S. D. Glyzin and A. Yu. Kolesov and N. Kh. Rozov},
     title = {An~approach to modeling artificial gene networks},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {547--568},
     year = {2018},
     volume = {194},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2018_194_3_a11/}
}
TY  - JOUR
AU  - S. D. Glyzin
AU  - A. Yu. Kolesov
AU  - N. Kh. Rozov
TI  - An approach to modeling artificial gene networks
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2018
SP  - 547
EP  - 568
VL  - 194
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2018_194_3_a11/
LA  - ru
ID  - TMF_2018_194_3_a11
ER  - 
%0 Journal Article
%A S. D. Glyzin
%A A. Yu. Kolesov
%A N. Kh. Rozov
%T An approach to modeling artificial gene networks
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2018
%P 547-568
%V 194
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2018_194_3_a11/
%G ru
%F TMF_2018_194_3_a11
S. D. Glyzin; A. Yu. Kolesov; N. Kh. Rozov. An approach to modeling artificial gene networks. Teoretičeskaâ i matematičeskaâ fizika, Tome 194 (2018) no. 3, pp. 547-568. http://geodesic.mathdoc.fr/item/TMF_2018_194_3_a11/

[1] M. B. Elowitz, S. Leibler, “A synthetic oscillatory network of transcriptional regulators”, Nature, 403 (2000), 335–338 | DOI

[2] A. N. Tikhonov, “Sistemy differentsialnykh uravnenii, soderzhaschie malye parametry pri proizvodnykh”, Matem. sb., 31(73):3 (1952), 575–586 | MR | Zbl

[3] E. P. Volokitin, “O predelnykh tsiklakh v prosteishei modeli gipoteticheskoi gennoi seti”, Sib. zhurn. industr. matem., 7:3 (2004), 57–65 | MR | Zbl

[4] O. Buşe, A. Kuznetsov, R. A. Pérez, “Existence of limit cycles in the repressilator equations”, Internat. J. Bifurcation Chaos, 19:12 (2009), 4097–4106 | DOI | MR | Zbl

[5] O. Buşe, R. Pérez, A. Kuznetsov, “Dynamical properties of the repressilator model”, Phys. Rev. E, 81:6 (2010), 066206, 7 pp. | DOI | MR

[6] V. A. Likhoshvai, Yu. G. Matushkin, S. I. Fadeev, “Zadachi teorii funktsionirovaniya gennykh setei”, Sib. zhurn. industr. matem., 6:2 (2003), 64–80 | MR | Zbl

[7] G. V. Demidenko, N. A. Kolchanov, V. A. Likhoshvai, Yu. G. Matushkin, S. I. Fadeev, “Matematicheskoe modelirovanie regulyarnykh konturov gennykh setei”, Zhurn. vychisl. matem. i matem. fiz., 44:12 (2004), 2276–2295 | MR | Zbl

[8] S. I. Fadeev, V. A. Likhoshvai, “O gipoteticheskikh gennykh setyakh”, Sib. zhurn. industr. matem., 6:3 (2003), 134–153 | MR | Zbl

[9] A. Yu. Kolesov, Yu. S. Kolesov, Relaksatsionnye kolebaniya v matematicheskikh modelyakh ekologii, Tr. MIAN, 199, ed. E. F. Mischenko, Nauka, M., 1993

[10] A. B. Vasileva, V. F. Butuzov, Asimptoticheskie razlozheniya reshenii singulyarno vozmuschennykh uravnenii, Nauka, M., 1973 | MR

[11] E. F. Mischenko, V. A. Sadovnichii, A. Yu. Kolesov, N. Kh. Rozov, Mnogolikii khaos, Fizmatlit, M., 2012