Tetrad-gauge theory of gravity
Teoretičeskaâ i matematičeskaâ fizika, Tome 194 (2018) no. 3, pp. 522-546 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We present a tetrad–gauge theory of gravity based on the local Lorentz group in a four-dimensional Riemann–Cartan space–time. Using the tetrad formalism allows avoiding problems connected with the noncompactness of the group and includes the possibility of choosing the local inertial reference frame arbitrarily at any point in the space–time. The initial quantities of the theory are the tetrad and gauge fields in terms of which we express the metric, connection, torsion, and curvature tensor. The gauge fields of the theory are coupled only to the gravitational field described by the tetrad fields. The equations in the theory can be solved both for a many-body system like the Solar System and in the general case of a static centrally symmetric field. The metric thus found coincides with the metric obtained in general relativity using the same approximations, but the interpretation of gravity is quite different. Here, the space–time torsion is responsible for gravity, and there is no curvature because the curvature tensor is a linear combination of the gauge field tensors, which are absent in the case of pure gravity. The gauge fields of the theory, which (together with the tetrad fields) define the structure of space–time, are not directly coupled to ordinary matter and can be interpreted as the fields describing dark energy and dark matter.
Keywords: tetrad formalism, gauge field, gravity, dark matter, dark energy.
Mots-clés : torsion
@article{TMF_2018_194_3_a10,
     author = {L. P. Shevchenko},
     title = {Tetrad-gauge theory of gravity},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {522--546},
     year = {2018},
     volume = {194},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2018_194_3_a10/}
}
TY  - JOUR
AU  - L. P. Shevchenko
TI  - Tetrad-gauge theory of gravity
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2018
SP  - 522
EP  - 546
VL  - 194
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2018_194_3_a10/
LA  - ru
ID  - TMF_2018_194_3_a10
ER  - 
%0 Journal Article
%A L. P. Shevchenko
%T Tetrad-gauge theory of gravity
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2018
%P 522-546
%V 194
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2018_194_3_a10/
%G ru
%F TMF_2018_194_3_a10
L. P. Shevchenko. Tetrad-gauge theory of gravity. Teoretičeskaâ i matematičeskaâ fizika, Tome 194 (2018) no. 3, pp. 522-546. http://geodesic.mathdoc.fr/item/TMF_2018_194_3_a10/

[1] F. W. Hehl, P. von der Heyde, G. D. Kerlick, J. M. Nester, “General relativity with spin and torsion: foundations and prospects”, Rev. Modern Phys., 48:3 (1976), 393–415 | DOI | MR

[2] L. D. Landau, E. M. Lifshits, Kurs teoreticheskoi fiziki, v. 2, Teoriya polya, Nauka, M., 2016 | MR

[3] O. V. Baburova, B. N. Frolov, Matematicheskie osnovy sovremennoi teorii gravitatsii, Prometei, M., 2012

[4] V. A. Rubakov, Klassicheskie kalibrovochnye polya. Bozonnye teorii, URSS, M., 2005 | MR

[5] Yu. B. Rumer, A. I. Fet, Teoriya grupp i kvantovannye polya, URSS, M., 2013 | MR

[6] K. Khuang, Kvarki, leptony i kalibrovochnye polya, Mir, M., 1985 | MR

[7] S. Vainberg, Gravitatsiya i kosmologiya, Mir, M., 1975

[8] A. D. Chernin, “Temnaya energiya i vsemirnoe antityagotenie”, UFN, 178:3 (2008), 267–300 | DOI | DOI

[9] N. N. Bogolyubov, D. V. Shirkov, Vvedenie v teoriyu kvantovannykh polei, Nauka, M., 1976 | MR