Using the evolution operator method to describe a particle in a homogeneous alternating field
Teoretičeskaâ i matematičeskaâ fizika, Tome 194 (2018) no. 2, pp. 364-380 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Using the evolution operator method, we construct coherent states of a nonrelativistic free particle with a variable mass $M(t)$ and a nonrelativistic particle with a variable mass $M(t)$ in a homogeneous alternating field. Under certain physical conditions, they can be regarded as semiclassical states of particles. We discuss the properties (in particular, the completeness relation, the minimization of the uncertainty relations, and the time evolution of the corresponding probability density) of the found coherent states in detail. We also construct exact wave functions of the oscillator type and of the plane-wave type for the considered systems and compute the quantum Wigner distribution functions for the wave functions of coherent and oscillator states. We establish the unitary equivalence of the problems of a free particle and a particle in a homogeneous alternating field.
Keywords: nonrelativistic particle, linear potential, evolution operator, coherent state, oscillatory state, Wigner function.
@article{TMF_2018_194_2_a9,
     author = {Sh. M. Nagiyev},
     title = {Using the~evolution operator method to describe a~particle in a~homogeneous alternating field},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {364--380},
     year = {2018},
     volume = {194},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2018_194_2_a9/}
}
TY  - JOUR
AU  - Sh. M. Nagiyev
TI  - Using the evolution operator method to describe a particle in a homogeneous alternating field
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2018
SP  - 364
EP  - 380
VL  - 194
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2018_194_2_a9/
LA  - ru
ID  - TMF_2018_194_2_a9
ER  - 
%0 Journal Article
%A Sh. M. Nagiyev
%T Using the evolution operator method to describe a particle in a homogeneous alternating field
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2018
%P 364-380
%V 194
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2018_194_2_a9/
%G ru
%F TMF_2018_194_2_a9
Sh. M. Nagiyev. Using the evolution operator method to describe a particle in a homogeneous alternating field. Teoretičeskaâ i matematičeskaâ fizika, Tome 194 (2018) no. 2, pp. 364-380. http://geodesic.mathdoc.fr/item/TMF_2018_194_2_a9/

[1] K. Husimi, “Miscellanea in elementary quantum mechanics. II”, Progr. Theor. Phys., 9 (1953), 381–402 | MR

[2] V. S. Popov, A. M. Perelomov, “Parametricheskoe vozbuzhdenie kvantovogo ostsillyatora”, ZhETF, 56:4 (1969), 1375–1390

[3] I. A. Malkin, V. I. Manko, Dinamicheskie simmetrii i kogerentnye sostoyaniya kvantovykh sistem, Nauka, M., 1979 | MR

[4] I. A. Pedrosa, “Exact wave functions of a harmonic oscillator with time-dependent mass and frequency”, Phys. Rev. A, 55:4 (1997), 3219–3221 | DOI

[5] P. Camiz, A. Gerardi, C. Marchioro, E. Presutti, E. Scacciatelli, “Exact solution of a time-dependent quantal harmonic oscillator with a singular perturbation”, J. Math. Phys., 12:10 (1971), 2040–2043 | DOI | MR | Zbl

[6] V. V. Dodonov, I. A. Malkin, V. I. Manko, “Even and odd coherent states and excitations of a singular oscillator”, Physica, 72 (1974), 597–618 | MR

[7] M. V. Berry, N. L. Balazs, “Nonspreading wave packets”, Am. J. Phys., 47:3 (1979), 264–267 | DOI

[8] V. V. Dodonov, V. I. Manko, O. V. Shakhmistova, “Wigner functions of a particle in a time-dependent uniform field”, Phys. Lett. A, 102:7 (1984), 295–297 | DOI | MR

[9] I. Guedes, “Solution of the Schrödinger equation for the time-dependent linear potential”, Phys. Rev. A, 63:3 (2001), 034102, 3 pp. | DOI

[10] M. Feng, “Complete solution of the Schrödinger equation for the time-dependent linear potential”, Phys. Rev. A, 64:3 (2002), 034101, 3 pp. | DOI

[11] P.-G. Luan, C.-S. Tang, “Lewis-Riesenfeld approach to the solutions of the Schrödinger equation in the presence of a time-dependent linear potential”, Phys. Rev. A, 71:1 (2005), 014101, 4 pp., arXiv: quant-ph/0309174 | DOI | MR | Zbl

[12] Sh. M. Nagiyev, K. Sh. Jafarova, “Relativistic quantum particle in a time-dependent homogeneous field”, Phys. Lett. A, 377:10–11 (2013), 747–752 | DOI | MR

[13] V. G. Bagrov, D. M. Gitman, A. S. Pereira, “Kogerentnye i poluklassicheskie sostoyaniya svobodnoi chastitsy”, UFN, 184:9 (2014), 961–966 | DOI

[14] J. R. Klander, B. S. Skagerstam, Coherent States: Applications in Physics and Mathematical Physics, World Sci., Singapore, 1985 | MR

[15] A. M. Perelomov, Obobschennye kogerentnye sostoyaniya i ikh primeneniya, Nauka, M., 1987 | MR

[16] A. O. Barut, L. Girardello, “New “coherent” states associated with non-compact groups”, Commun. Math. Phys., 21:1 (1971), 41–55 | DOI | MR

[17] M. Hillery, R. F. O'Connell, M. O. Scully, E. P. Wigner, “Distribution functions in physics: fundamentals”, Phys. Rep., 106:3 (1984), 121–167 | DOI | MR

[18] H.-W. Lee, “Theory and application of the quantum phase-space distribution functions”, Phys. Rep., 259:3 (1995), 147–211 | DOI | MR

[19] V. N. Tatarskii, “Vignerovskoe predstavlenie kvantovoi mekhaniki”, UFN, 139:4 (1983), 587–619 | DOI

[20] R. W. Davies, K. T. R. Davies, “On the Wigner distribution function for an oscillator”, Ann. Phys., 89:2 (1975), 261–273 | DOI | MR

[21] E. P. Bogdanov, V. N. Gorshenkov, V. L. Konkov, Izv. vuzov SSSR. Fizika, 7 (1970), 94–101

[22] Sh. M. Nagiev, “Funktsiya Vignera dlya relyativistskoi chastitsy v zavisyaschem ot vremeni lineinom potentsiale”, TMF, 188:1 (2016), 76–84 | DOI

[23] N. M. Atakishiev, Sh. M. Nagiev, K. B. Volf, “O funktsiyakh raspredeleniya Vignera dlya relyativistskogo lineinogo ostsillyatora”, TMF, 114:3 (1998), 410–425 | DOI | Zbl

[24] A. P. Prudnikov, Yu. A. Brychkov, O. I. Marichev, Integraly i ryady, v. 2, Spetsialnye funktsii, Nauka, M., 1982 | MR