Optimization of remote one- and two-qubit state creation by unitary transformations of a sender and an extended receiver
Teoretičeskaâ i matematičeskaâ fizika, Tome 194 (2018) no. 2, pp. 343-363 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We study the optimization problem for remote one- and two-qubit state creation via a homogeneous communication line of spin-$1/2$ particles using local unitary transformations of the multiqubit sender and extended receiver. We show that the maximum length of a communication line used for the needed state creation (the critical length) increases as the dimensionality of the sender and extended receiver increases. We use the model with the sender and extended receiver comprising up to ten qubits for the one-qubit state creation and consider the creation of two particular states, the almost pure state and the maximally mixed state. Regarding the two-qubit state creation, we numerically study the dependence of the critical length on a particular triad of independent eigenvalues to be created using the model with a four-qubit sender without an extended receiver.
Keywords: quantum state creation, multiqubit sender, extended receiver, optimizing transformation, creatable eigenvalue, critical length.
Mots-clés : communication line
@article{TMF_2018_194_2_a8,
     author = {G. A. Bochkin and A. I. Zenchuk},
     title = {Optimization of remote one- and two-qubit state creation by unitary transformations of a~sender and an~extended receiver},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {343--363},
     year = {2018},
     volume = {194},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2018_194_2_a8/}
}
TY  - JOUR
AU  - G. A. Bochkin
AU  - A. I. Zenchuk
TI  - Optimization of remote one- and two-qubit state creation by unitary transformations of a sender and an extended receiver
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2018
SP  - 343
EP  - 363
VL  - 194
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2018_194_2_a8/
LA  - ru
ID  - TMF_2018_194_2_a8
ER  - 
%0 Journal Article
%A G. A. Bochkin
%A A. I. Zenchuk
%T Optimization of remote one- and two-qubit state creation by unitary transformations of a sender and an extended receiver
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2018
%P 343-363
%V 194
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2018_194_2_a8/
%G ru
%F TMF_2018_194_2_a8
G. A. Bochkin; A. I. Zenchuk. Optimization of remote one- and two-qubit state creation by unitary transformations of a sender and an extended receiver. Teoretičeskaâ i matematičeskaâ fizika, Tome 194 (2018) no. 2, pp. 343-363. http://geodesic.mathdoc.fr/item/TMF_2018_194_2_a8/

[1] S. Bose, “Quantum communication through an unmodulated spin chain”, Phys. Rev. Lett., 91:20 (2003), 207901, 4 pp. | DOI

[2] M. Christandl, N. Datta, A. Ekert, A. J. Landahl, “Perfect state transfer in quantum spin networks”, Phys. Rev. Lett., 92:18 (2004), 187902, 4 pp. | DOI

[3] C. Albanese, M. Christandl, N. Datta, A. Ekert, “Mirror inversion of quantum states in linear registers”, Phys. Rev. Lett., 93:23 (2004), 230502, 4 pp. | DOI | MR

[4] P. Karbach, J. Stolze, “Spin chains as perfect quantum state mirrors”, Phys. Rev. A, 72:3 (2005), 030301, 4 pp. | DOI | MR

[5] G. Gualdi, V. Kostak, I. Marzoli, P. Tombesi, “Perfect state transfer in long-range interacting spin chains”, Phys. Rev. A, 78:2 (2008), 022325, 5 pp. | DOI

[6] A. Wójcik, T. Luczak, P. Kurzyński, A. Grudka, T. Gdala, M. Bednarska, “Unmodulated spin chains as universal quantum wires”, Phys. Rev. A, 72:3 (2005), 034303, 3 pp. | DOI

[7] L. Banchi, T. J. G. Apollaro, A. Cuccoli, R. Vaia, P. Verrucchi, “Optimal dynamics for quantum-state and entanglement transfer through homogeneous quantum systems”, Phys. Rev. A, 82:5 (2010), 052321, 5 pp. | DOI

[8] A. Zwick, O. Osenda, “Quantum state transfer in a XX chain with impurities”, J. Phys. A: Math. Theor., 44:10 (2011), 105302, 16 pp. | DOI | MR | Zbl

[9] L. Banchi, T. J. G. Apollaro, A. Cuccoli, R. Vaia, P. Verrucchi, “Long quantum channels for high-quality entanglement transfer”, New J. Phys., 13:12 (2011), 123006 | DOI

[10] T. J. G. Apollaro, L. Banchi, A. Cuccoli, R. Vaia, P. Verrucchi, “99$\%$-fidelity ballistic quantum-state transfer through long uniform channels”, Phys. Rev. A, 85:5 (2012), 052319, 11 pp. | DOI

[11] S. I. Doronin, A. I. Zenchuk, “High-probability state transfers and entanglements between different nodes of the homogeneous spin-$\frac{1}{2}$ chain in an inhomogeneous external magnetic field”, Phys. Rev. A, 81:2 (2010), 022321, 6 pp. | DOI

[12] H. L. Haselgrove, “Optimal state encoding for quantum walks and quantum communication over spin systems”, Phys. Rev. A, 72:6 (2005), 062326, 9 pp. | DOI

[13] C. A. Bishop, Y.-C. Ou, Z.-M. Wang, M. S. Byrd, “High-fidelity state transfer over an unmodulated linear $XY$ spin chain”, Phys. Rev. A, 81:4 (2010), 042313, 7 pp. | DOI

[14] M. Zukowski, A. Zeilinger, M. A. Horne, A. K. Ekert, “'Event-ready-detectors' Bell experiment via entanglement”, Phys. Rev. Lett., 71:28 (1993), 4287–4290 | DOI

[15] D. Bouwmeester, J.-W. Pan, K. Mattle, M. Eibl, H. Weinfurter, A. Zeilinger, “Experimental quantum teleportation”, Nature, 390:6660 (1997), 575–579 | DOI | Zbl

[16] D. Boschi, S. Branca, F. De Martini, L. Hardy, S. Popescu, “Experimental realization of teleporting an unknown pure quantum state via dual classical and Einstein–Podolsky–Rosen channels”, Phys. Rev. Lett., 80:6 (1998), 1121–1125 | DOI | MR | Zbl

[17] N. A. Peters, J. T. Barreiro, M. E. Goggin, T.-C. Wei, P. G. Kwiat, “Remote state preparation: arbitrary remote control of photon polarization”, Phys. Rev. Lett., 94:15 (2005), 150502, 4 pp. | DOI

[18] N. A. Peters, J. T. Barreiro, M. E. Goggin, T.-C. Wei, P. G. Kwiat, “Remote state preparation: arbitrary remote control of photon polarizations for quantum communication”, Quantum Communications and Quantum Imaging III, Proc. of SPIE, 5893, eds. R. E. Meyers, Ya. Shih, SPIE, Bellingham, WA, 2005, 589308 | DOI

[19] B. Dakić, Ya. O. Lipp, X. Ma, M. Ringbauer, S. Kropatschek, S. Barz, T. Paterek, V. Vedral, A. Zeilinger, C̆. Brukner, P. Walther, “Quantum discord as resource for remote state preparation”, Nat. Phys., 8 (2012), 666–670 | DOI

[20] G. Y. Xiang, J. Li, B. Yu, G. C. Guo, “Remote preparation of mixed states via noisy entanglement”, Phys. Rev. A, 72:1 (2005), 012315, 6 pp. | DOI

[21] L. L. Liu, T. Hwang, “Controlled remote state preparation protocols via AKLT states”, Quantum Inf. Process., 13:7 (2014), 1639–1650 | DOI | MR | Zbl

[22] G. A. Bochkin, A. I. Zenchuk, “Remote one-qubit-state control using the pure initial state of a two-qubit sender: Selective-region and eigenvalue creation”, Phys. Rev. A, 91:6 (2015), 062326, 11 pp. | DOI

[23] G. A. Bochkin, A. I. Zenchuk, “Extension of remotely creatable region via local unitary transformation on receiver side”, Quantum Inf. Comput., 16:15–16 (2016), 1349–1364 | MR

[24] E. I. Kuznetsova, A. I. Zenchuk, “High-probability quantum state transfer in an alternating open spin chain with an $XY$ Hamiltonian”, Phys. Lett. A, 372:40 (2008), 6134–6140 | DOI | MR | Zbl

[25] J. Stolze, G. A. Álvarez, O. Osenda, A. Zwick, “Robustness of spin-chain state-transfer schemes”, Quantum State Transfer and Network Engineering. Quantum Science and Technology, eds. G. M. Nikolopoulos, I. Jex, Springer, Berlin, Heidelberg, 2014, 149–182 | DOI | MR

[26] A. Bayat, V. Karimipour, “Thermal effects on quantum communication through spin chains”, Phys. Rev. A, 71:4 (2005), 042330, 7 pp. | DOI

[27] P. Cappellaro, “Coherent-state transfer via highly mixed quantum spin chains”, Phys. Rev. A, 83:3 (2011), 032304, 10 pp. | DOI

[28] W. Qin, Ch. Wang, G. L. Long, “High-dimensional quantum state transfer through a quantum spin chain”, Phys. Rev. A, 87:1 (2013), 012339, 7 pp. | DOI

[29] A. Bayat, “Arbitrary perfect state transfer in d-level spin chains”, Phys. Rev. A, 89:6 (2014), 062302, 6 pp. | DOI

[30] C. Godsil, S. Kirkland, S. Severini, Ja. Smith, “Number-theoretic nature of communication in quantum spin systems”, Phys. Rev. Lett., 109:5 (2012), 050502, 4 pp. | DOI

[31] R. Sousa, Ya. Omar, “Pretty good state transfer of entangled states through quantum spin chains”, New J. Phys., 16:12 (2014), 123003 | DOI

[32] D. Burgarth, S. Bose, “Conclusive and arbitrarily perfect quantum-state transfer using parallel spin-chain channels”, Phys. Rev. A, 71:5 (2005), 052315, 6 pp. | DOI

[33] K. Shizume, K. Jacobs, D. Burgarth, S. Bose, “Quantum communication via a continuously monitored dual spin chain”, Phys. Rev. A, 75:6 (2007), 062328, 6 pp. | DOI | MR

[34] J. Stolze, A. I. Zenchuk, “Remote two-qubit state creation and its robustness.”, Quantum Inf. Process., 15:8 (2016), 3347–3366 | DOI | MR | Zbl