Mots-clés : communication line
@article{TMF_2018_194_2_a8,
author = {G. A. Bochkin and A. I. Zenchuk},
title = {Optimization of remote one- and two-qubit state creation by unitary transformations of a~sender and an~extended receiver},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {343--363},
year = {2018},
volume = {194},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2018_194_2_a8/}
}
TY - JOUR AU - G. A. Bochkin AU - A. I. Zenchuk TI - Optimization of remote one- and two-qubit state creation by unitary transformations of a sender and an extended receiver JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2018 SP - 343 EP - 363 VL - 194 IS - 2 UR - http://geodesic.mathdoc.fr/item/TMF_2018_194_2_a8/ LA - ru ID - TMF_2018_194_2_a8 ER -
%0 Journal Article %A G. A. Bochkin %A A. I. Zenchuk %T Optimization of remote one- and two-qubit state creation by unitary transformations of a sender and an extended receiver %J Teoretičeskaâ i matematičeskaâ fizika %D 2018 %P 343-363 %V 194 %N 2 %U http://geodesic.mathdoc.fr/item/TMF_2018_194_2_a8/ %G ru %F TMF_2018_194_2_a8
G. A. Bochkin; A. I. Zenchuk. Optimization of remote one- and two-qubit state creation by unitary transformations of a sender and an extended receiver. Teoretičeskaâ i matematičeskaâ fizika, Tome 194 (2018) no. 2, pp. 343-363. http://geodesic.mathdoc.fr/item/TMF_2018_194_2_a8/
[1] S. Bose, “Quantum communication through an unmodulated spin chain”, Phys. Rev. Lett., 91:20 (2003), 207901, 4 pp. | DOI
[2] M. Christandl, N. Datta, A. Ekert, A. J. Landahl, “Perfect state transfer in quantum spin networks”, Phys. Rev. Lett., 92:18 (2004), 187902, 4 pp. | DOI
[3] C. Albanese, M. Christandl, N. Datta, A. Ekert, “Mirror inversion of quantum states in linear registers”, Phys. Rev. Lett., 93:23 (2004), 230502, 4 pp. | DOI | MR
[4] P. Karbach, J. Stolze, “Spin chains as perfect quantum state mirrors”, Phys. Rev. A, 72:3 (2005), 030301, 4 pp. | DOI | MR
[5] G. Gualdi, V. Kostak, I. Marzoli, P. Tombesi, “Perfect state transfer in long-range interacting spin chains”, Phys. Rev. A, 78:2 (2008), 022325, 5 pp. | DOI
[6] A. Wójcik, T. Luczak, P. Kurzyński, A. Grudka, T. Gdala, M. Bednarska, “Unmodulated spin chains as universal quantum wires”, Phys. Rev. A, 72:3 (2005), 034303, 3 pp. | DOI
[7] L. Banchi, T. J. G. Apollaro, A. Cuccoli, R. Vaia, P. Verrucchi, “Optimal dynamics for quantum-state and entanglement transfer through homogeneous quantum systems”, Phys. Rev. A, 82:5 (2010), 052321, 5 pp. | DOI
[8] A. Zwick, O. Osenda, “Quantum state transfer in a XX chain with impurities”, J. Phys. A: Math. Theor., 44:10 (2011), 105302, 16 pp. | DOI | MR | Zbl
[9] L. Banchi, T. J. G. Apollaro, A. Cuccoli, R. Vaia, P. Verrucchi, “Long quantum channels for high-quality entanglement transfer”, New J. Phys., 13:12 (2011), 123006 | DOI
[10] T. J. G. Apollaro, L. Banchi, A. Cuccoli, R. Vaia, P. Verrucchi, “99$\%$-fidelity ballistic quantum-state transfer through long uniform channels”, Phys. Rev. A, 85:5 (2012), 052319, 11 pp. | DOI
[11] S. I. Doronin, A. I. Zenchuk, “High-probability state transfers and entanglements between different nodes of the homogeneous spin-$\frac{1}{2}$ chain in an inhomogeneous external magnetic field”, Phys. Rev. A, 81:2 (2010), 022321, 6 pp. | DOI
[12] H. L. Haselgrove, “Optimal state encoding for quantum walks and quantum communication over spin systems”, Phys. Rev. A, 72:6 (2005), 062326, 9 pp. | DOI
[13] C. A. Bishop, Y.-C. Ou, Z.-M. Wang, M. S. Byrd, “High-fidelity state transfer over an unmodulated linear $XY$ spin chain”, Phys. Rev. A, 81:4 (2010), 042313, 7 pp. | DOI
[14] M. Zukowski, A. Zeilinger, M. A. Horne, A. K. Ekert, “'Event-ready-detectors' Bell experiment via entanglement”, Phys. Rev. Lett., 71:28 (1993), 4287–4290 | DOI
[15] D. Bouwmeester, J.-W. Pan, K. Mattle, M. Eibl, H. Weinfurter, A. Zeilinger, “Experimental quantum teleportation”, Nature, 390:6660 (1997), 575–579 | DOI | Zbl
[16] D. Boschi, S. Branca, F. De Martini, L. Hardy, S. Popescu, “Experimental realization of teleporting an unknown pure quantum state via dual classical and Einstein–Podolsky–Rosen channels”, Phys. Rev. Lett., 80:6 (1998), 1121–1125 | DOI | MR | Zbl
[17] N. A. Peters, J. T. Barreiro, M. E. Goggin, T.-C. Wei, P. G. Kwiat, “Remote state preparation: arbitrary remote control of photon polarization”, Phys. Rev. Lett., 94:15 (2005), 150502, 4 pp. | DOI
[18] N. A. Peters, J. T. Barreiro, M. E. Goggin, T.-C. Wei, P. G. Kwiat, “Remote state preparation: arbitrary remote control of photon polarizations for quantum communication”, Quantum Communications and Quantum Imaging III, Proc. of SPIE, 5893, eds. R. E. Meyers, Ya. Shih, SPIE, Bellingham, WA, 2005, 589308 | DOI
[19] B. Dakić, Ya. O. Lipp, X. Ma, M. Ringbauer, S. Kropatschek, S. Barz, T. Paterek, V. Vedral, A. Zeilinger, C̆. Brukner, P. Walther, “Quantum discord as resource for remote state preparation”, Nat. Phys., 8 (2012), 666–670 | DOI
[20] G. Y. Xiang, J. Li, B. Yu, G. C. Guo, “Remote preparation of mixed states via noisy entanglement”, Phys. Rev. A, 72:1 (2005), 012315, 6 pp. | DOI
[21] L. L. Liu, T. Hwang, “Controlled remote state preparation protocols via AKLT states”, Quantum Inf. Process., 13:7 (2014), 1639–1650 | DOI | MR | Zbl
[22] G. A. Bochkin, A. I. Zenchuk, “Remote one-qubit-state control using the pure initial state of a two-qubit sender: Selective-region and eigenvalue creation”, Phys. Rev. A, 91:6 (2015), 062326, 11 pp. | DOI
[23] G. A. Bochkin, A. I. Zenchuk, “Extension of remotely creatable region via local unitary transformation on receiver side”, Quantum Inf. Comput., 16:15–16 (2016), 1349–1364 | MR
[24] E. I. Kuznetsova, A. I. Zenchuk, “High-probability quantum state transfer in an alternating open spin chain with an $XY$ Hamiltonian”, Phys. Lett. A, 372:40 (2008), 6134–6140 | DOI | MR | Zbl
[25] J. Stolze, G. A. Álvarez, O. Osenda, A. Zwick, “Robustness of spin-chain state-transfer schemes”, Quantum State Transfer and Network Engineering. Quantum Science and Technology, eds. G. M. Nikolopoulos, I. Jex, Springer, Berlin, Heidelberg, 2014, 149–182 | DOI | MR
[26] A. Bayat, V. Karimipour, “Thermal effects on quantum communication through spin chains”, Phys. Rev. A, 71:4 (2005), 042330, 7 pp. | DOI
[27] P. Cappellaro, “Coherent-state transfer via highly mixed quantum spin chains”, Phys. Rev. A, 83:3 (2011), 032304, 10 pp. | DOI
[28] W. Qin, Ch. Wang, G. L. Long, “High-dimensional quantum state transfer through a quantum spin chain”, Phys. Rev. A, 87:1 (2013), 012339, 7 pp. | DOI
[29] A. Bayat, “Arbitrary perfect state transfer in d-level spin chains”, Phys. Rev. A, 89:6 (2014), 062302, 6 pp. | DOI
[30] C. Godsil, S. Kirkland, S. Severini, Ja. Smith, “Number-theoretic nature of communication in quantum spin systems”, Phys. Rev. Lett., 109:5 (2012), 050502, 4 pp. | DOI
[31] R. Sousa, Ya. Omar, “Pretty good state transfer of entangled states through quantum spin chains”, New J. Phys., 16:12 (2014), 123003 | DOI
[32] D. Burgarth, S. Bose, “Conclusive and arbitrarily perfect quantum-state transfer using parallel spin-chain channels”, Phys. Rev. A, 71:5 (2005), 052315, 6 pp. | DOI
[33] K. Shizume, K. Jacobs, D. Burgarth, S. Bose, “Quantum communication via a continuously monitored dual spin chain”, Phys. Rev. A, 75:6 (2007), 062328, 6 pp. | DOI | MR
[34] J. Stolze, A. I. Zenchuk, “Remote two-qubit state creation and its robustness.”, Quantum Inf. Process., 15:8 (2016), 3347–3366 | DOI | MR | Zbl