Ground states and phase transition of the $\lambda$ model on the Cayley tree
Teoretičeskaâ i matematičeskaâ fizika, Tome 194 (2018) no. 2, pp. 304-319 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider the $\lambda$ model, a generalization of the Potts model, with spin values $\{1,2,3\}$ on the order-two Cayley tree. We describe the model ground states and prove that translation-invariant Gibb measures exist, which means that a phase transition exists. We establish that two-periodic Gibbs measures exist.
Keywords: ground state, Gibbs measure.
Mots-clés : phase transition
@article{TMF_2018_194_2_a5,
     author = {F. M. Mukhamedov and Ch. Pah and H. Jamil},
     title = {Ground states and phase transition of the~$\lambda$ model on {the~Cayley} tree},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {304--319},
     year = {2018},
     volume = {194},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2018_194_2_a5/}
}
TY  - JOUR
AU  - F. M. Mukhamedov
AU  - Ch. Pah
AU  - H. Jamil
TI  - Ground states and phase transition of the $\lambda$ model on the Cayley tree
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2018
SP  - 304
EP  - 319
VL  - 194
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2018_194_2_a5/
LA  - ru
ID  - TMF_2018_194_2_a5
ER  - 
%0 Journal Article
%A F. M. Mukhamedov
%A Ch. Pah
%A H. Jamil
%T Ground states and phase transition of the $\lambda$ model on the Cayley tree
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2018
%P 304-319
%V 194
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2018_194_2_a5/
%G ru
%F TMF_2018_194_2_a5
F. M. Mukhamedov; Ch. Pah; H. Jamil. Ground states and phase transition of the $\lambda$ model on the Cayley tree. Teoretičeskaâ i matematičeskaâ fizika, Tome 194 (2018) no. 2, pp. 304-319. http://geodesic.mathdoc.fr/item/TMF_2018_194_2_a5/

[1] R. Bekster, Tochno reshaemye modeli v statisticheskoi mekhanike, Mir, M., 1985 | MR | Zbl

[2] Kh.-O. Georgi, Gibbsovskie mery i fazovye perekhody, Mir, M., 1992 | MR | Zbl

[3] M. C. Marques, “Three-state Potts model with antiferromagnetic interactions: a MFRG approach”, J. Phys. A: Math. Gen., 21:4 (1988), 1061–1068 | DOI

[4] M. P. Nightingale, M. Schick, “Three-state square lattice Potts antiferromagnet”, J. Phys. A: Math. Gen., 15:1 (1982), L39–L42 | DOI

[5] R. B. Potts, “Some generalized order-disorder transformations”, Proc. Cambridge Philos. Soc., 48:1 (1952), 106–109 | DOI | MR | Zbl

[6] F. Y. Wu, “The Potts model”, Rev. Modern Phys., 54:1 (1982), 235–268 | DOI | MR

[7] S. N. Dorogovtsev, A. V. Goltsev, J. F. F. Mendes, “Potts model on complex networks”, Eur. Phys. J. B, 38:2 (2004), 177–182 | DOI

[8] F. Peruggi, “Probability measures and Hamiltonian models on Bethe lattices. I. Properties and construction of MRT probability measures”, J. Math. Phys., 25:11 (1984), 3303–3315 | DOI | MR

[9] F. Peruggi, “Probability measures and Hamiltonian models on Bethe lattices. II. The solution of thermal and configurational problems”, J. Math. Phys., 25:1 (1984), 3316–3323 | DOI | MR

[10] P. N. Timonin, “Indutsirovannye neodnorodnostyami fazovye perekhody vtorogo roda v modeli Pottsa na ierarkhicheskikh reshetkakh”, ZhETF, 126:5 (2004), 1198–1208

[11] F. Peruggi, F. di Liberto, G. Monroy, “Potts model on Bethe lattices. I. General results”, J. Phys. A: Math. Gen., 16:4 (1983), 811–827 | DOI | MR

[12] F. Peruggi, F. di Liberto, G. Monroy, “Phase diagrams of the $q$-state Potts model on Bethe lattices”, Phys. A, 141:1 (1987), 151–186 | DOI | MR

[13] N. N. Ganikhodzhaev, “O chistykh fazakh ferromagnitnoi modeli Pottsa s tremya sostoyaniyami na reshetke Bete vtorogo poryadka”, TMF, 85:2 (1990), 163–175 | DOI | MR

[14] N. N. Ganikhodjaev, F. M. Mukhamedov, J. F. F. Mendes, “On the three state Potts model with competing interactions on the Bethe lattice”, J. Stat. Mech., 2006:8 (2006), P08012, 29 pp. | DOI

[15] K. Preston, Gibbsovskie sostoyaniya na schetnykh mnozhestvakh, Mir, M., 1977 | MR

[16] N. N. Ganikhodjaev, U. A. Rozikov, “On disordered phase in the ferromagnetic Potts model on the Bethe lattice”, Osaka J. Math., 37:2 (2000), 373–383 | MR

[17] U. A. Rozikov, R. M. Khakimov, “Periodicheskie mery Gibbsa dlya modeli Pottsa na dereve Keli”, TMF, 175:2 (2013), 300–312 | DOI | DOI | MR | Zbl

[18] F. M. Mukhamedov, “On a factor associated with the unordered phase of $\lambda$-model on a Cayley tree”, Rep. Math. Phys., 53:1 (2004), 1–18 | DOI | MR | Zbl

[19] U. A. Rozikov, “Opisanie predelnykh gibbsovskikh mer dlya $\lambda$-modelei na reshetkakh Bete”, Sib. matem. zhurn., 39:2 (1998), 427–435 | Zbl

[20] U. A. Rozikov, Gibbs Measures on Cayley Trees, World Sci., Singapore, 2013 | MR

[21] F. M. Mukhamedov, U. A. Rozikov, “Ekstremalnost neuporyadochennoi fazy neodnorodnoi modeli Pottsa na dereve Keli”, TMF, 124:3 (2000), 410–418 | DOI | DOI | MR | Zbl