Spin-one $p$-spin glass: Exact solution for large $p$
Teoretičeskaâ i matematičeskaâ fizika, Tome 194 (2018) no. 2, pp. 295-303 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We study the low-temperature properties of the $p$-spin spin glass model in the spin-one (three-state) case for large values of $p$. We show that the one-step replica symmetry-breaking phase is unstable at a very low temperature, and we calculate the explicit boundary of the stability interval, the Gardner temperature, analytically for large values of $p$. This temperature for the spin-one model has the same form of $p$-dependence as in the case of Ising spins (two states). In the one-step replica symmetry-breaking state, a quadrupolar orientational glass coexists with the spin glass and also with a regular quadrupole ordering.
Keywords: spin glass, replica approach, Gardner transition.
Mots-clés : quadrupole glass
@article{TMF_2018_194_2_a4,
     author = {E. E. Tareeva and T. I. Schelkacheva},
     title = {Spin-one $p$-spin glass: {Exact} solution for large $p$},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {295--303},
     year = {2018},
     volume = {194},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2018_194_2_a4/}
}
TY  - JOUR
AU  - E. E. Tareeva
AU  - T. I. Schelkacheva
TI  - Spin-one $p$-spin glass: Exact solution for large $p$
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2018
SP  - 295
EP  - 303
VL  - 194
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2018_194_2_a4/
LA  - ru
ID  - TMF_2018_194_2_a4
ER  - 
%0 Journal Article
%A E. E. Tareeva
%A T. I. Schelkacheva
%T Spin-one $p$-spin glass: Exact solution for large $p$
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2018
%P 295-303
%V 194
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2018_194_2_a4/
%G ru
%F TMF_2018_194_2_a4
E. E. Tareeva; T. I. Schelkacheva. Spin-one $p$-spin glass: Exact solution for large $p$. Teoretičeskaâ i matematičeskaâ fizika, Tome 194 (2018) no. 2, pp. 295-303. http://geodesic.mathdoc.fr/item/TMF_2018_194_2_a4/

[1] D. J. Gross, M. Mezard, “The simplest spin glass”, Nucl. Phys. B, 240:4 (1984), 431–452 | DOI | MR

[2] E. Gardner, “Spin glasses with $p$-spin interactions”, Nucl. Phys. B, 257:6 (1985), 747–765 | DOI | MR

[3] D. Sherrington, S. Kirkpatrick, “Solvable model of a spin-glass”, Phys. Rev. Lett., 35:26 (1975), 1792–1796 ; S. Kirkpatrick, D. Sherrington, “Infinite-ranged models of spin-glasses”, Phys. Rev. B, 17:11 (1978), 4384–4403 | DOI | DOI

[4] A. Crisanti, H.-J. Sommers, “The spherical $p$-spin interaction spin glass model: the statics”, Z. Phys. B Condens. Matter, 87:3 (1992), 341–354 | DOI

[5] T. R. Kirkpatrick, P. G. Wolynes, “Connection between some kinetic and equilibrium theories of the glass transition”, Phys. Rev. A, 35:7 (1987), 3072–3080 | DOI

[6] T. R. Kirkpatrick, P. G. Wolynes, “Stable and metastable states in mean-field Potts and structural glasses”, Phys. Rev. B, 36:16 (1987), 8552–8564 | DOI

[7] T. R. Kirkpatrick, D. Thirumalai, “Dynamics of the structural glass transition and the $p$-spin-interaction spin-glass model”, Phys. Rev. Lett., 58:20 (1987), 2091–2094 | DOI | MR

[8] T. R. Kirkpatrick, D. Thirumalai, P. G. Wolynes, “Scaling concepts for the dynamics of viscous liquids near an ideal glassy state”, Phys. Rev. A, 40:2 (1989), 1045–1054 | DOI

[9] G. Parisi, F. Zamponi, “Mean field theory of hard sphere glasses and jamming”, Rev. Modern Phys., 82:1 (2010), 789–845 | DOI

[10] P. G. Wolynes, V. Lubchenko, Structural Glasses and Supercooled Liquids: Theory, Experiment, and Applications, Hoboken, NJ, John Wiley and Sons, 2012

[11] L. Berthier, G. Biroli, “Theoretical perspective on the glass transition and amorphous materials”, Rev. Modern Phys., 83:2 (2011), 587–645 | DOI

[12] J. Kourchan, G. Parisi, P. Urbani, F. Zamponi, “Exact theory of dense amorphous hard spheres in high dimension. II. The high density regime and the Gardner transition”, J. Phys. Chem. B, 117:42 (2013), 12979–12994 | DOI

[13] P. Charbonneau, J. Kourchan, G. Parisi, P. Urbani, F. Zamponi, “Fractal free energy landscapes in structural glasses”, Nat. Commun., 5 (2014), 3725, 6 pp. | DOI

[14] P. Charbonneau, Y. Jin, G. Parisi, C. Rainone, B. Seoane, F. Zamponi, “Numerical detection of the Gardner transition in a mean-field glass former”, Phys. Rev. E, 92:1 (2015), 012316, 15 pp. | DOI

[15] P. Charbonneau, J. Kourchan, G. Parisi, P. Urbani, F. Zamponi, “Exact theory of dense amorphous hard spheres in high dimension. III. The full replica symmetry breaking solution”, J. Stat. Mech. Theor. Exp., 2014:10 (2014), P10009, 75 pp. | DOI | MR

[16] C. Rainone, P. Urbani, H. Yoshino, F. Zamponi, “Following the evolution of glassy states under external perturbations: compression and shear-strain”, Phys. Rev. Lett., 114:1 (2015), 015701, 5 pp. | DOI

[17] P. Urbani, G. Biroli, “Gardner transition in finite dimensions”, Phys. Rev. B, 91:10 (2015), 100202, 5 pp. | DOI

[18] A. Montanari, F. Ricci-Tersenghi, “On the nature of the low-temperature phase in discontinuous mean-field spin glasses”, Eur. Phys. J. B, 33:3 (2003), 339–346 | DOI

[19] A. Montanari, F. Ricci-Tersenghi, “Cooling-schedule dependence of the dynamics of mean-field glasses”, Phys. Rev. B, 70:13 (2004), 134406, 8 pp. | DOI

[20] T. Rizzo, “Replica-symmetry-breaking transitions and off-equilibrium dynamics”, Phys. Rev. E, 88:3 (2013), 032135, 12 pp. | DOI

[21] D. J. Gross, I. Kanter, H. Sompolinsky, “Mean-field theory of the Potts glass”, Phys. Rev. Lett., 55:3 (1985), 304–307 | DOI

[22] N. V. Gribova, V. N. Ryzhov, E. E. Tareyeva, “Low-temperature phase transition in the three-state Potts glass”, Phys. Rev. E, 68:6 (2003), 067103, 4 pp. | DOI

[23] T. I. Schelkacheva, N. M. Chtchelkatchev, “Replica analysis of the generalized $p$-spin interaction glass model”, J. Phys. A: Math. Theor., 44:44 (2011), 445004, 14 pp. | DOI | Zbl

[24] T. I. Schelkacheva, E. E. Tareyeva, N. M. Chtchelkatchev, “Full versus first-stage replica symmetry breaking in spin glasses”, Phys. Rev. B, 82:13 (2010), 134208, 5 pp. | DOI

[25] T. I. Schelkacheva, E. E. Tareyeva, N. M. Chtchelkatchev, “Pressure-induced orientational glass phase in molecular para-hydrogen”, Phys. Rev. E, 79:2 (2009), 021105, 7 pp. | DOI

[26] E. E. Tareyeva, T. I. Schelkacheva, N. M. Chtchelkatchev, “Continuous and discontinuous transitions in generalized $p$-spin glass models”, J. Phys. A: Math. Theor., 47:7 (2014), 075002, 12 pp. | DOI | MR | Zbl

[27] T. I. Schelkacheva, E. E. Tareyeva, N. M. Chtchelkatchev, “Generalized Sherrington–Kirkpatrick glass without reflection symmetry”, Phys. Rev. E, 89:4 (2014), 042149, 5 pp. | DOI

[28] E. E. Tareeva, T. I. Schelkachëva, N. M. Schelkachëv, “Nekotorye osobennosti povedeniya neizingovykh spinovykh stekol”, TMF, 182:3 (2015), 500–512 | DOI | DOI | MR

[29] P. Mottishaw, “First-order spin-glass transitions: an exact solution”, Europhys. Lett., 1:8 (1986), 409–414 | DOI

[30] J. M. de Araújo, F. A. da Costa, F. D. Nobre, “First-order transitions and triple point on a random $p$-spin interaction model”, J. Phys. A: Math. Gen., 33:10 (2000), 1987 | DOI

[31] E. A. Luchinskaya, E. E. Tareeva, “Spinovoe steklo s $S=1$”, TMF, 90:2 (1992), 273–277 | DOI | MR

[32] G. Parisi, “A sequence of approximated solutions to the S-K model for spin glasses”, J. Phys. A: Math. Gen., 13:4 (1980), L115–L121 | DOI

[33] J. R. L. Almeida, D. J. Thouless, “Stability of the Sherrington–Kirkpatrick solution of a spin glass model”, J. Phys. A, 11:5 (1978), 983–990 | DOI

[34] N. N. Bogolyubov, “Kvazisrednie v zadachakh statisticheskoi mekhaniki”, Sobranie nauchnykh trudov v 12 tomakh. Statisticheskaya mekhanika, v. 6, Ravnovesnaya statisticheskaya mekhanika, 1945–1986, Nauka, M., 2006, 236–327