Algebraic aspects of the dynamics of quantum multilevel systems in
Teoretičeskaâ i matematičeskaâ fizika, Tome 194 (2018) no. 2, pp. 259-276 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Using the projection operator method, we obtain approximate time-local and time-nonlocal master equations for the reduced statistical operator of a multilevel quantum system with a finite number $N$ of quantum eigenstates coupled simultaneously to arbitrary classical fields and a dissipative environment. We show that the structure of the obtained equations is significantly simplified if the free Hamiltonian dynamics of the multilevel system under the action of external fields and also its Markovian and non-Markovian evolutions due to coupling to the environment are described via the representation of the multilevel system in terms of the $SU(N)$ algebra, which allows realizing effective numerical algorithms for solving the obtained equations when studying real problems in various fields of theoretical and applied physics.
Keywords: multilevel quantum system, abbreviated description, projection operator, open system, unitary group generator, operation algebra, master equation, expansion in terms of a system of orthogonal polynomials.
@article{TMF_2018_194_2_a2,
     author = {N. N. Bogolyubov (Jr.) and A. V. Soldatov},
     title = {Algebraic aspects of the~dynamics of quantum multilevel systems in},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {259--276},
     year = {2018},
     volume = {194},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2018_194_2_a2/}
}
TY  - JOUR
AU  - N. N. Bogolyubov (Jr.)
AU  - A. V. Soldatov
TI  - Algebraic aspects of the dynamics of quantum multilevel systems in
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2018
SP  - 259
EP  - 276
VL  - 194
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2018_194_2_a2/
LA  - ru
ID  - TMF_2018_194_2_a2
ER  - 
%0 Journal Article
%A N. N. Bogolyubov (Jr.)
%A A. V. Soldatov
%T Algebraic aspects of the dynamics of quantum multilevel systems in
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2018
%P 259-276
%V 194
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2018_194_2_a2/
%G ru
%F TMF_2018_194_2_a2
N. N. Bogolyubov (Jr.); A. V. Soldatov. Algebraic aspects of the dynamics of quantum multilevel systems in. Teoretičeskaâ i matematičeskaâ fizika, Tome 194 (2018) no. 2, pp. 259-276. http://geodesic.mathdoc.fr/item/TMF_2018_194_2_a2/

[1] N. N. Bogolyubov, N. M. Krylov, “Ob uravneniyakh Fokkera–Planka, kotorye vyvodyatsya v teorii vozmuschenii metodom, osnovannym na spektralnykh svoistvakh vozmuschennogo gamiltoniana”, Zap. kafedry matem. fiz. Instituta nelineinoi mekhaniki AN USSR, 4 (1939), 5–80 ; Н. Н. Боголюбов, Собрание научных трудов в 12 томах. Статистическая механика, т. 5, Неравновесная статистическая механика. 1939–1980, Наука, М., 2006 | MR | Zbl

[2] N. N. Bogolyubov, O nekotorykh statisticheskikh metodakh v matematicheskoi fizike, Izd-vo AN USSR, 1945 ; Н. Н. Боголюбов, Избранные труды в трех томах, т. 2, Наукова думка, Киев, 1970 | MR | MR

[3] N. N. Bogolyubov, Problemy dinamicheskoi teorii v statisticheskoi fizike, Gostekhizdat, M.-L., 1946 ; Н. Н. Боголюбов, Избранные труды в трех томах, т. 2, Наукова думка, Киев, 1970, 99–196 | MR | MR

[4] D. N. Zubarev, V. G. Morozov, G. Repke, Statisticheskaya mekhanika neravnovesnykh protsessov, v. 1, 2, Fizmatlit, M., 2002 | MR | Zbl

[5] H.-P. Breuer, F. Petruccione, The Theory of Open Quantum Systems, Oxford Univ. Press, Oxford, 2002 | MR | Zbl

[6] E. Fick, G. Sauermann, The Quantum Statistics of Dynamic Processes, Springer Series in Solid-State Sciences, 86, Springer, Berlin, 1990 | MR

[7] F. T. Hioe, J. H. Eberly, “$N$-level coherence vector and higher conservation laws in quantum optics and quantum mechanics”, Phys. Rev. Lett., 47:12 (1981), 838–841 | DOI | MR

[8] R. R. Puri, “$SU(m,n)$ coherent states in the bosonic representation and their generation in optical parametric processes”, Phys. Rev. A, 50:6 (1994), 5309–5316 | DOI

[9] R. R. Puri, Mathematical methods of quantum optics, Springer Series in Optical Sciences, 79, Springer, Berlin, 2001 | DOI | MR | Zbl

[10] R. Zwanzig, “Ensemble method in the theory of irreversibility”, J. Chem. Phys., 33:5 (1960), 1338–1341 | DOI | MR

[11] F. Shibata, Y. Takahashi, N. Hashitsume, “A generalized stochastic Liouville equation. Non-Markovian versus memoryless master equations”, J. Statist. Phys., 17:4 (1977), 171–187 | DOI | MR

[12] H.-P. Breuer, B. Kappler, F. Petruccione, “The time-convolutionless projection operator technique in the quantum theory of dissipation and decoherence”, Ann. Phys., 291:1 (2001), 36–70 | DOI | MR | Zbl

[13] A. G. Redfield, “On the theory of relaxation processes”, IBM J. Res. Dev., 1:1 (1957), 19–31 | DOI

[14] M. Suzuki, “Generalized Trotter's formula and systematic approximants of exponential operators and inner derivations with applications to many-body problems”, Comm. Math. Phys., 51:2 (1976), 183–190 | DOI | MR | Zbl