Phase space of collective variables and the~Zubarev transition
Teoretičeskaâ i matematičeskaâ fizika, Tome 194 (2018) no. 2, pp. 224-258

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the completeness of the transition function $J(\rho-\hat\rho)$ to the infinite set of collective variables $\{\rho_{\mathbf k}\}$. Zubarev first introduced this transition function in statistical physics. We propose complete forms for the Jacobians of transitions to the corresponding sets of collective variables in problems in the theory of electrolyte solutions, the Ising model, and the first-order phase transition. We analyze the methods and calculation results in the phase spaces of collective variables of the partition functions of these systems.
Mots-clés : collective variables, Jacobian
Keywords: theory of electrolytes, quartic measure density, Ising model, first-order phase transitions.
@article{TMF_2018_194_2_a1,
     author = {I. R. Yukhnovskii},
     title = {Phase space of collective variables and {the~Zubarev} transition},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {224--258},
     publisher = {mathdoc},
     volume = {194},
     number = {2},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2018_194_2_a1/}
}
TY  - JOUR
AU  - I. R. Yukhnovskii
TI  - Phase space of collective variables and the~Zubarev transition
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2018
SP  - 224
EP  - 258
VL  - 194
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_2018_194_2_a1/
LA  - ru
ID  - TMF_2018_194_2_a1
ER  - 
%0 Journal Article
%A I. R. Yukhnovskii
%T Phase space of collective variables and the~Zubarev transition
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2018
%P 224-258
%V 194
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_2018_194_2_a1/
%G ru
%F TMF_2018_194_2_a1
I. R. Yukhnovskii. Phase space of collective variables and the~Zubarev transition. Teoretičeskaâ i matematičeskaâ fizika, Tome 194 (2018) no. 2, pp. 224-258. http://geodesic.mathdoc.fr/item/TMF_2018_194_2_a1/