Phase space of collective variables and the Zubarev transition
Teoretičeskaâ i matematičeskaâ fizika, Tome 194 (2018) no. 2, pp. 224-258 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We study the completeness of the transition function $J(\rho-\hat\rho)$ to the infinite set of collective variables $\{\rho_{\mathbf k}\}$. Zubarev first introduced this transition function in statistical physics. We propose complete forms for the Jacobians of transitions to the corresponding sets of collective variables in problems in the theory of electrolyte solutions, the Ising model, and the first-order phase transition. We analyze the methods and calculation results in the phase spaces of collective variables of the partition functions of these systems.
Mots-clés : collective variables, Jacobian
Keywords: theory of electrolytes, quartic measure density, Ising model, first-order phase transitions.
@article{TMF_2018_194_2_a1,
     author = {I. R. Yukhnovskii},
     title = {Phase space of collective variables and {the~Zubarev} transition},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {224--258},
     year = {2018},
     volume = {194},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2018_194_2_a1/}
}
TY  - JOUR
AU  - I. R. Yukhnovskii
TI  - Phase space of collective variables and the Zubarev transition
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2018
SP  - 224
EP  - 258
VL  - 194
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2018_194_2_a1/
LA  - ru
ID  - TMF_2018_194_2_a1
ER  - 
%0 Journal Article
%A I. R. Yukhnovskii
%T Phase space of collective variables and the Zubarev transition
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2018
%P 224-258
%V 194
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2018_194_2_a1/
%G ru
%F TMF_2018_194_2_a1
I. R. Yukhnovskii. Phase space of collective variables and the Zubarev transition. Teoretičeskaâ i matematičeskaâ fizika, Tome 194 (2018) no. 2, pp. 224-258. http://geodesic.mathdoc.fr/item/TMF_2018_194_2_a1/

[1] D. N. Zubarev, “Vychislenie konfiguratsionnogo integrala sistemy chastits s kulonovskim vzaimodeistviem”, Dokl. AN SSSR, 95:4 (1954), 757–760 | MR | Zbl

[2] D. Bohm, D. Pines, “A collective description of electron interactions. I. Magnetic interactions”, Phys. Rev., 82:5 (1951), 625–634 ; “A collective description of electron interactions. II. Collective $\mathrm{vs}$ individual particle aspects of the interactions”, Phys. Rev., 85:2 (1952), 338–353 ; “A collective description of electron interactions. III. Coulomb interactions in a degenerate electron gas”, Phys. Rev., 92:3 (1953), 609–625 | DOI | DOI | DOI

[3] G. J. Yevic, J. K. Perkus, “New approach to the many-body problem”, Phys. Rev., 101:3 (1956), 1186–1191 | DOI

[4] J. Hubbard, “Calculation of partition functions”, Phys. Rev. Lett., 3:2 (1959), 77–78 ; “The description of collective motions in terms of many-body perturbation theory”, Proc. Roy. Soc. A, 240:1223 (1957), 539–560 | DOI | DOI

[5] R. L. Stratanovich, “Ob odnom metode vychisleniya kvantovykh funktsii raspredeleniya”, Dokl. AN SSSR, 115:6 (1957), 1097-1100 | MR | Zbl

[6] I. R. Yukhnovskii, “Primenenie kollektivnykh peremennykh i uchet korotkodeistvuyuschikh sil v teorii sistem zaryazhennykh chastits”, ZhETF, 34:2 (1958), 379–389

[7] I. R. Yukhnovskii, “Kvantova statistichna suma i kolektivni zminni. II. Funktsiya perekhodu do kolektivnikh zminnikh”, Ukr. fiz. zhurn., 9:8 (1964), 827–838

[8] I. R. Yukhnovskii, M. K. Ostrovskii, “Vlastivosti funktsiï perekhodu do kolektivnikh zminnikh”, Vestn. Lvov. un-ta. Ser. fiz., 5:13 (1969), 3–11

[9] I. R. Yukhnovskii, “K statisticheskoi teorii ionnykh sistem”, Ukr. fiz. zhurn., 4:2 (1959), 167–176

[10] I. R. Yukhnovskii, “K statisticheskoi teorii smeshannykh ionno-dipolnykh sistem vzaimodeistvuyuschikh chastits”, Dokl. AN SSSR, 136:6 (1961), 1317–1320

[11] I. R. Yukhnovskii, “Do statistichnoï teoriï sistem vza{\fontencoding{X2}\selectfontєmodiyuchikh ioniv ta dipolnikh chastinok”, Ukr. fiz. zhurn., 6:3 (1961), 333–339

[12] A. A. Nekrot, “Metod kutovikh kolektivnikh zminnikh dlya obchislennya statistichnoï sumi zmishanoï ionno-dipolnoï sistemi. I. Klasichnii vipadok”, Ukr. fiz. zhurn., 8 (1963), 560–567

[13] I. R. Yukhnovskii, A. A. Nekrot, “Virialnye razlozheniya dlya plazmy v metode kollektivnykh peremennykh”, Ukr. fiz. zhurn., 11:4 (1966), 363–371

[14] I. R. Yukhnovskii, M. F. Golovko, “Statisticheskaya teoriya ravnovesnykh sistem chastits slozhnoi elektrostaticheskoi struktury”, Ukr. fiz. zhurn., 14:7 (1969), 1116–1129

[15] I. R. Yukhnovskii, V. S. Vysochanskii, M. F. Golovko, Issledovanie gruppovykh razlozhenii dlya binarnykh funktsii raspredeleniya sistem chastits s elektrostaticheskim vzaimodeistviem. I. Tretii virialnyi koeffitsient, Preprint ITF-72-IP, Kiev, 1972; “Бинарные функции распределения ионно-дипольных систем”, Укр. физ. журн., 18 (1973), 66–74; “К исследованию бинарных функций распределения ионно-дипольных систем”, Укр. физ. журн., 18 (1973), 1842–1847

[16] V. S. Vysochanskii, “Funktsii raspredeleniya ‘dipol-dipol’ v smeshannykh ionno-dipolnykh sistemakh”, Ukr. fiz. zhurn., 22:2 (1977), 209–212

[17] I. R. Yukhnovskii, V. D. Gruba, M. F. Golovko, Yu. M. Kessler, “Issledovanie zavisimosti potentsialov srednei sily mezhionnogo vzaimodeistviya ot parametrov i formy potentsialov ionno-molekulyarnykh i mezhmolekulyarnykh vzaimodeistvii”, Ukr. fiz. zhurn., 25:11 (1980), 1761–1765

[18] I. R. Yukhnovskii, M. F. Golovko, A. V. Popov, “Tochnyi uchet dipolnykh orientatsii pri raschete binarnykh funktsii raspredeleniya smeshannoi ionno-dipolnoi sistemy”, Ukr. fiz. zhurn., 25:5 (1980), 762–770

[19] I. I. Kurylyak, I. R. Yukhnovskii, “Metod kollektivnykh peremennykh v ravnovesnoi statisticheskoi teorii ogranichennykh sistem zaryazhennykh chastits. I. Kontinualnaya model rastvora elektrolita, zanimayuschego poluprostranstvo”, TMF, 52:1 (1982), 114–126 | DOI

[20] M. F. Golovko, I. I. Kurylyak, O. A. Pizio, E. N. Sovyak, “O bazisnom uchete vzaimodeistvii v statisticheskoi teorii ionno-molekulyarnykh sistem”, Problemy sovremennoi statisticheskoi fiziki, ed. N. N. Bogolyubov, Naukova dumka, Kiev, 1985, 82–96

[21] I. R. Yukhnovskii, Vydelenie sistemy otscheta v metode kollektivnykh peremennykh, Preprint ITF-74-149R, ITF AN USSR, Kiev

[22] M. F. Golovko, O. A. Pizio, “Bazisnyi uchet korotkodeistvuyuschikh vzaimodeistvii v teorii ionnykh sistem”, Ukr. fiz. zhurn., 21:4 (1976), 653–662

[23] I. R. Yukhnovskii, M. F. Golovko, Statisticheskaya teoriya klassicheskikh sistem vzaimodeistvuyuschikh chastits, Naukova dumka, Kiev, 1980 | MR

[24] L. Blum, D. Q. Wei, “Analytical solution of the mean spherical approximation for an arbitrary mixture of ions in a dipolar solvent”, J. Chem. Phys., 87:1 (1987), 555–565 | DOI

[25] M. F. Golovko, I. A. Protsykevich, “Pair correlation functions for the asymmetric ion-dipole model in the mean spherical approximation”, Chem. Phys. Lett., 142:6 (1987), 463–468 | DOI

[26] M. F. Golovko, I. A. Protsykevich, “Analytic solution of the mean spherical approximation for ion-dipole model in a neutralizing background”, J. Statist. Phys., 54:3–4 (1989), 707–733 | DOI | MR

[27] M. Wertheim, “Exact solution of the mean spherical model for fluids of hard spheres with permanent electric dipole moments”, J. Chem. Phys., 55:9 (1971), 4291–4298 | DOI

[28] M. F. Holovko, V. Kapko, “Ion association phenomena and static dielectric properties in electrolyte solutions: application of the effective mean spherical approximation – mass action law approach”, Acta Chim. Slov., 56 (2009), 203–208

[29] I. R. Yukhnovskii, Yu. K. Rudavskii, “Obosnovanie formy bazisnogo raspredeleniya vblizi tochki fazovogo perekhoda v modeli Izinga”, Dokl. AN SSSR, 233:4 (1977), 579–582

[30] I. R. Yukhnovskii, Integrirovanie statisticheskoi summy trekhmernoi modeli Izinga v metode kollektivnykh peremennykh, Preprint ITF-76-24R, ITF AN USSR, Kiev, 1976; Укр. физ. журн., 22:2 (1977), 323–335, 382–392; “Статистическая сумма трехмерной модели Изинга”, Докл. АН СССР, 232:2 (1977), 312–315 ; ТМФ, 36:3 (1978), 373–399 | MR | DOI

[31] I. R. Yukhnovskii, Fazovye perekhody vtorogo roda. Metod kollektivnykh peremennykh, Naukova dumka, Kiev, 1985 | MR

[32] I. R. Yukhnovskii, M. P. Kozlovskii, I. V. Pylyuk, “Thermodynamics of three-dimensional Ising-like systems in the higher non-Gaussian approximation: calculational method and dependence on microscopic parameters”, Phys. Rev. B, 66:13 (2002), 134410, 18 pp. | DOI

[33] M. P. Kozlovskii, I. V. Pylyuk, O. O. Prytula, “Microscopic description of the critical behavior of three-dimensional Ising-like systems in an external field”, Phys. Rev. B., 73:17 (2006), 174406, 13 pp. | DOI

[34] I. R. Yukhnovskii, M. P. Kozlovskii, I. V. Pylyuk, Mikroskopicheskaya teoriya fazovykh perekhodov v trekhmernykh sistemakh, Evrosvit, Lvov, 2001

[35] L. P. Kadanoff, “Scaling laws for Ising models near $T_c$”, Physics, 2:6 (1966), 263–272

[36] K. G. Wilson, “Renormalization group and critical phenomena. I. Renormalization group and the Kadanoff scaling picture”, Phys. Rev. B., 4:9 (1971), 3174–3183 | DOI | Zbl

[37] K. Vilson, Dzh. Kogut, Renormalizatsionnaya gruppa i $\epsilon$-razlozhenie, Mir, M., 1975

[38] A. Z. Patashinskii, V. L. Pokrovskii, Fluktuatsionnaya teoriya fazovykh perekhodov, Nauka, M., 1975 | MR

[39] R. Braut, Fazovye perekhody, Mir, M., 1967

[40] I. M. Idzyk, V. A. Kolomiets, I. R. Yukhnovskii, “Kriticheskaya tochka sistemy zhidkost–gaz v metode kollektivnykh peremennykh”, TMF, 73:2 (1987), 264–280 | DOI

[41] L. D. Landau, Sobranie trudov. V 2-kh t., Nauka, M., 1969

[42] I. R. Yukhnovskii, “Metod kollektivnykh peremennykh s sistemoi otscheta dlya bolshogo kanonicheskogo ansamblya”, TMF, 79:2 (1989), 282–296 | DOI

[43] I. R. Yukhnovskii, “Funktsional bolshoi statisticheskoi summy v metode kollektivnykh peremennykh i ego primenenie k issledovaniyu fazovogo perekhoda zhidkost–gaz”, Statisticheskaya mekhanika i teoriya dinamicheskikh sistem, K 80-letiyu so dnya rozhdeniya akademika Nikolaya Nikolaevicha Bogolyubova, Tr. MIAN SSSR, 191, Nauka, M., 1989, 201–219 | MR | Zbl

[44] I. R. Yukhnovskii, I. M. Idzyk, V. O. Kolomiets, “Investigation of a homogeneous many-particle system in the vicinity of the critical point”, J. Stat. Phys., 80:1–2 (1995), 405–443 | DOI

[45] I. R. Yukhnovskii, “The phase transition of the first order in the critical region of the gas-liquid system”, Condens. Matter Phys., 17:4 (2014), 43001, 28 pp., arXiv: 1501.02325 | DOI

[46] V. I. Kalikmanov, J. Wolk, T. Kraska, “Argon nucleation: Bringing together theory, simulations, and experiment”, J. Chem. Phys., 128:12 (2008), 124506 | DOI

[47] A. Fladerer, R. Strey, “Homogeneous nucleation and droplet growth in supersaturated argon vapor: the cryogenic nucleation pulse chamber”, J. Chem. Phys., 124:16 (2006), 164710 | DOI

[48] J. D van der Waals, On the continuity of the gaseous and liquid states, PhD thesis University of Leiden, Studies in Statistical Mechanics, XIV, North Holland, Amsterdam, 1873 | MR

[49] R. Balesku, Ravnovesnaya i neravnovesnaya statisticheskaya mekhanika, v. 1,\;2, Mir, M., 1978 | MR | Zbl

[50] L. D. Landau, E. M. Lifshits, Kurs teoreticheskoi fiziki, v. 5, Statisticheskaya fizika, Nauka, M., 1976

[51] G. A. Martynov, “Problemy fazovykh perekhodov v statisticheskoi mekhanike”, UFN, 169:6 (1999), 595–624 | DOI | DOI

[52] Yu. L. Klimontovich, “Fazovyi perekhod gaz–zhidkost. Model Van-der-Vaalsa”, TMF, 115:3 (1998), 437–458 | DOI | DOI | MR | Zbl

[53] A. S. Bakai, “Heterophase liquid states: thermodynamics, structure, dynamics”, Condens. Matter Phys., 17:4 (2014), 43701, 24 pp. | DOI

[54] I. R. Yukhnovskii, “Fazovi perekhodi v okoli kritichnoï tochki gaz–ridina”, Ukr. fiz. zhurn. Obzory, 10:1 (2015), 33–97