@article{TMF_2018_194_2_a0,
author = {W. F. Wreszinski and V. A. Zagrebnov},
title = {Bogoliubov quasiaverages: {Spontaneous} symmetry breaking and the~algebra of fluctuations},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {187--223},
year = {2018},
volume = {194},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2018_194_2_a0/}
}
TY - JOUR AU - W. F. Wreszinski AU - V. A. Zagrebnov TI - Bogoliubov quasiaverages: Spontaneous symmetry breaking and the algebra of fluctuations JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2018 SP - 187 EP - 223 VL - 194 IS - 2 UR - http://geodesic.mathdoc.fr/item/TMF_2018_194_2_a0/ LA - ru ID - TMF_2018_194_2_a0 ER -
%0 Journal Article %A W. F. Wreszinski %A V. A. Zagrebnov %T Bogoliubov quasiaverages: Spontaneous symmetry breaking and the algebra of fluctuations %J Teoretičeskaâ i matematičeskaâ fizika %D 2018 %P 187-223 %V 194 %N 2 %U http://geodesic.mathdoc.fr/item/TMF_2018_194_2_a0/ %G ru %F TMF_2018_194_2_a0
W. F. Wreszinski; V. A. Zagrebnov. Bogoliubov quasiaverages: Spontaneous symmetry breaking and the algebra of fluctuations. Teoretičeskaâ i matematičeskaâ fizika, Tome 194 (2018) no. 2, pp. 187-223. http://geodesic.mathdoc.fr/item/TMF_2018_194_2_a0/
[1] D. Ruelle, Statistical Mechanics. Rigorous Results, Benjamin, New York, 1969 | MR | Zbl
[2] O. Bratteli, D. W. Robinson, Operator Algebras and Quantum Statistical Mechanics. 1. $C^\ast$- and $W^\ast$-algebras, symmetry groups, decomposition of states, Springer, Berlin, 1987 | DOI | MR
[3] G. L. Sewell, Quantum Theory of Collective Phenomena, Oxford Univ. Press, New York, 1986 | MR
[4] N. N. Bogolyubov, Sobranie nauchnykh trudov v 12 tomakh. Statisticheskaya mekhanika, v. 8, Teoriya neidealnogo boze-gaza, sverkhtekuchesti i sverkhprovodimosti. 1946–1992, Nauka, M., 2007 | MR
[5] N. N. Bogolyubov, Sobranie nauchnykh trudov v 12 tomakh. Statisticheskaya mekhanika, v. 6, Lektsii po kvantovoi statistike. Kvazisrednie v zadachakh statisticheskoi mekhaniki, Nauka, M., 2007
[6] E. H. Lieb, R. Seiringer, J. Yngvason, “Bose–Einstein condensation and spontaneous symmetry breaking”, Rep. Math. Phys., 59:3 (2007), 389–399 | DOI | MR | Zbl
[7] M. van den Berg, J. T. Lewis, J. V. Pulè, “A general theory of Bose–Einstein condensation”, Helv. Phys. Acta, 59:8 (1986), 1271–1288 | DOI | MR
[8] M. Beau, V. A. Zagrebnov, “The second critical density and anisotropic generalised condensation”, Condens. Matter Phys., 13:2 (2010), 23003, 10 pp. | DOI
[9] D. N. Zubarev, “Granichnye usloviya dlya statisticheskikh operatorov v teorii neravnovesnykh protsessov i kvazisrednie”, TMF, 3:2 (1970), 276–286 | DOI | MR
[10] D. N. Zubarev, Neravnovesnaya statisticheskaya termodinamika, Nauka, M., 1971 | MR
[11] D. N. Zubarev, V. G. Morozov, G. Repke, Statisticheskaya mekhanika neravnovesnykh protsessov, v. 1, Fizmatlit, M., 2002 | MR | Zbl
[12] A. F. Verbeure, Many-Body Boson Systems. Half a Century Later, Springer, Berlin, 2011 | DOI | MR
[13] M. van den Berg, J. T. Lewis, M. Lunn, “On the general theory of Bose–Einstein condensation and the state of the free boson gas”, Helv. Phys. Acta, 59:8 (1986), 1289–1310 | DOI | MR
[14] V. A. Zagrebnov, J.-B. Bru, “The Bogoliubov model of weakly imperfect Bose gas”, Phys. Rep., 350:5–6 (2001), 291–434 | DOI | MR | Zbl
[15] U. Bratteli, D. Robinson, Operatornye algebry i kvantovaya statisticheskaya mekhanika, Mir, M., 1982 | MR
[16] Th. Jaeck, V. A. Zagrebnov, “Exactness of the Bogoliubov approximation in random external potentials”, J. Math.Phys., 51:12 (2010), 123306, 16 pp. | DOI | MR | Zbl
[17] V. A. Zagrebnov, “The Bogoliubov $c$-number approximation for random boson systems”, Zbirnik prats In-tu matematiki NAN Ukraïni, 11:1 (2014), 123–140 | Zbl
[18] J. Ginibre, “On the asymptotic exactness of the Bogoliubov approximation for many boson systems”, Comm. Math. Phys., 8:1 (1968), 26–51 | DOI | MR | Zbl
[19] E. H. Lieb, R. Seiringer, J. Yngvason, “Justification of $c$-number substitutions in bosonic hamiltonians”, Phys. Rev. Lett., 94:8 (2005), 080401, 4 pp. | DOI
[20] A. Sütő, “Equivalence of Bose–Einstein condensation and symmetry breaking”, Phys. Rev. Lett., 94:8 (2005), 080402, 4 pp. | DOI
[21] E. H. Lieb, “The classical limit of quantum spin systems”, Commun. Math. Phys., 31:4 (1973), 327–340 | DOI | MR | Zbl
[22] R. B. Griffiths, “Spontaneous magnetization in idealized ferromagnets”, Phys. Rev., 152:1 (1966), 240–246 | DOI
[23] R. V. Kadison, “States and representations”, Trans. Amer. Math. Soc., 103:2 (1962), 304–319 | DOI | MR | Zbl
[24] A. Verbeure, V. A. Zagrebnov, “Phase transitions and algebra of fluctuation operators in an exactly soluble model of a quantum anharmonic crystal”, J. Stat. Phys., 69:1–2 (1992), 329–359 | DOI | MR | Zbl
[25] D. Goderis, A. Verbeure, P. Vets, “Non-commutative central limits”, Probab. Theory Related Fields, 82:4 (1987), 527–544 | DOI | MR
[26] D. Goderis, A. Verbeure, P. Vets, “Dynamics of fluctuations for quantum lattice systems”, Commun. Math. Phys., 128:3 (1990), 533–549 | DOI | MR | Zbl
[27] D. Goderis, P. Vets, “Central limit theorem for mixing quantum systems and the CCR-algebra of fluctuations”, Commun. Math. Phys., 122:2 (1989), 249–265 | DOI | MR | Zbl
[28] M. Requardt, “Fluctuation operators and spontaneous symmetry breaking”, J. Math. Phys., 43:1 (2002), 351–372 | DOI | MR | Zbl
[29] I. G. Brankov, V. A. Zagrebnov, N. S. Tonchev, “Opisanie predelnykh gibbsovskikh sostoyanii dlya modeli Kyuri–Veissa–Izinga”, TMF, 66:1 (1986), 109–120 | DOI | MR
[30] V. L. Aksenov, N. M. Plakida, S. Stamenkovič, Neutron Scattering by Ferroelectrics, World Sci., Singapore, 1990
[31] R. A. Minlos, E. A. Pechersky, V. A. Zagrebnov, “Analyticity of the Gibbs state for a quantum anharmonic crystal: No order parameter”, Ann. Henri Poincaré, 3:5 (2002), 921–938 | DOI | MR | Zbl
[32] S. Albeverio, Yu. Kondratiev, Yu. Kozitsky, M. Röckner, The Statistical Mechanics of Quantum Lattice Systems. A Path Integral Approach, EMS Tracts in Mathematics, 8, European Mathematical Society (EMS), Zürich, 2009 | DOI | MR | Zbl
[33] N. N. Bogolyubov (ml.), I. G. Brankov, V. A. Zagrebnov, A. M. Kurbatov, N. S. Tonchev, “Nekotorye klassy tochno reshaemykh modelnykh zadach kvantovoi statisticheskoi mekhaniki: metod approksimiruyuschego gamiltoniana”, UMN, 39:6(240) (1984), 3–45 | DOI | MR
[34] N. M. Plakida, N. S. Tonchev, “Tochno reshaemaya $d$-mernaya model strukturnogo fazovogo perekhoda”, TMF, 63:2 (1985), 270–279 | MR
[35] A. Verbeure, V. A. Zagrebnov, “No-go theorem for quantum structural phase transitions”, J. Phys. A: Math. Gen., 28:18 (1995), 5415–5421 | DOI | MR | Zbl
[36] P. Joussot, V. A. Zagrebnov, “Quantum critical fluctuations in ferroelectric model: Quasi- average approach”, J. Math. Phys., 39:2 (1998), 921–930 | DOI | MR | Zbl
[37] W. F. Wreszinski, V. A. Zagrebnov, On ergodic states, spontaneous symmetry breaking and the Bogoliubov quasi-averages, arXiv: 1607.03024
[38] G. L. Sewell, W. F. Wreszinski, “On the mathematical theory of superfluidity”, J. Phys. A: Math. Theor., 42:1 (2009), 015207, 23 pp. | DOI | MR | Zbl
[39] M. Fannes, J. V. Pulè, A. Verbeure, “On Bose condensation”, Helv. Phys. Acta, 55:4 (1982), 391–399 | DOI | MR
[40] J. V. Pulé, A. F. Verbeure, V. A. Zagrebnov, “On nonhomogeneous Bose condensation”, J. Math. Phys., 46:8 (2005), 083301, 8 pp. | DOI | MR | Zbl
[41] N. M. Hugenholtz, “States and representations in statistical mechanics”, Mathematics of Contemporary Physics, ed. R. F. Streater, Academic Press, London, New York, 1972, 145–193
[42] W. F. Wreszinski, “Passivity of ground states of quantum systems”, Rev. Math. Phys., 17:1 (2005), 1–14 | DOI | MR | Zbl
[43] G. L. Sewell, Quantum Mechanics and Its Emergent Macrophysics, Princeton Univ. Press, Princeton, NJ, 2002 | MR