Bogoliubov quasiaverages: Spontaneous symmetry breaking and the algebra of fluctuations
Teoretičeskaâ i matematičeskaâ fizika, Tome 194 (2018) no. 2, pp. 187-223 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We present arguments supporting the use of the Bogoliubov method of quasiaverages for quantum systems. First, we elucidate how it can be used to study phase transitions with spontaneous symmetry breaking (SSB). For this, we consider the example of Bose–Einstein condensation in continuous systems. Analysis of different types of generalized condensations shows that the only physically reliable quantities are those defined by Bogoliubov quasiaverages. In this connection, we also solve the Lieb–Seiringer–Yngvason problem. Second, using the scaled Bogoliubov method of quasiaverages and considering the example of a structural quantum phase transition, we examine a relation between SSB and critical quantum fluctuations. We show that the quasiaverages again provide a tool suitable for describing the algebra of critical quantum fluctuation operators in both the commutative and noncommutative cases.
Keywords: quasiaverages, generalized condensation, critical quantum fluctuations.
@article{TMF_2018_194_2_a0,
     author = {W. F. Wreszinski and V. A. Zagrebnov},
     title = {Bogoliubov quasiaverages: {Spontaneous} symmetry breaking and the~algebra of fluctuations},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {187--223},
     year = {2018},
     volume = {194},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2018_194_2_a0/}
}
TY  - JOUR
AU  - W. F. Wreszinski
AU  - V. A. Zagrebnov
TI  - Bogoliubov quasiaverages: Spontaneous symmetry breaking and the algebra of fluctuations
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2018
SP  - 187
EP  - 223
VL  - 194
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2018_194_2_a0/
LA  - ru
ID  - TMF_2018_194_2_a0
ER  - 
%0 Journal Article
%A W. F. Wreszinski
%A V. A. Zagrebnov
%T Bogoliubov quasiaverages: Spontaneous symmetry breaking and the algebra of fluctuations
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2018
%P 187-223
%V 194
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2018_194_2_a0/
%G ru
%F TMF_2018_194_2_a0
W. F. Wreszinski; V. A. Zagrebnov. Bogoliubov quasiaverages: Spontaneous symmetry breaking and the algebra of fluctuations. Teoretičeskaâ i matematičeskaâ fizika, Tome 194 (2018) no. 2, pp. 187-223. http://geodesic.mathdoc.fr/item/TMF_2018_194_2_a0/

[1] D. Ruelle, Statistical Mechanics. Rigorous Results, Benjamin, New York, 1969 | MR | Zbl

[2] O. Bratteli, D. W. Robinson, Operator Algebras and Quantum Statistical Mechanics. 1. $C^\ast$- and $W^\ast$-algebras, symmetry groups, decomposition of states, Springer, Berlin, 1987 | DOI | MR

[3] G. L. Sewell, Quantum Theory of Collective Phenomena, Oxford Univ. Press, New York, 1986 | MR

[4] N. N. Bogolyubov, Sobranie nauchnykh trudov v 12 tomakh. Statisticheskaya mekhanika, v. 8, Teoriya neidealnogo boze-gaza, sverkhtekuchesti i sverkhprovodimosti. 1946–1992, Nauka, M., 2007 | MR

[5] N. N. Bogolyubov, Sobranie nauchnykh trudov v 12 tomakh. Statisticheskaya mekhanika, v. 6, Lektsii po kvantovoi statistike. Kvazisrednie v zadachakh statisticheskoi mekhaniki, Nauka, M., 2007

[6] E. H. Lieb, R. Seiringer, J. Yngvason, “Bose–Einstein condensation and spontaneous symmetry breaking”, Rep. Math. Phys., 59:3 (2007), 389–399 | DOI | MR | Zbl

[7] M. van den Berg, J. T. Lewis, J. V. Pulè, “A general theory of Bose–Einstein condensation”, Helv. Phys. Acta, 59:8 (1986), 1271–1288 | DOI | MR

[8] M. Beau, V. A. Zagrebnov, “The second critical density and anisotropic generalised condensation”, Condens. Matter Phys., 13:2 (2010), 23003, 10 pp. | DOI

[9] D. N. Zubarev, “Granichnye usloviya dlya statisticheskikh operatorov v teorii neravnovesnykh protsessov i kvazisrednie”, TMF, 3:2 (1970), 276–286 | DOI | MR

[10] D. N. Zubarev, Neravnovesnaya statisticheskaya termodinamika, Nauka, M., 1971 | MR

[11] D. N. Zubarev, V. G. Morozov, G. Repke, Statisticheskaya mekhanika neravnovesnykh protsessov, v. 1, Fizmatlit, M., 2002 | MR | Zbl

[12] A. F. Verbeure, Many-Body Boson Systems. Half a Century Later, Springer, Berlin, 2011 | DOI | MR

[13] M. van den Berg, J. T. Lewis, M. Lunn, “On the general theory of Bose–Einstein condensation and the state of the free boson gas”, Helv. Phys. Acta, 59:8 (1986), 1289–1310 | DOI | MR

[14] V. A. Zagrebnov, J.-B. Bru, “The Bogoliubov model of weakly imperfect Bose gas”, Phys. Rep., 350:5–6 (2001), 291–434 | DOI | MR | Zbl

[15] U. Bratteli, D. Robinson, Operatornye algebry i kvantovaya statisticheskaya mekhanika, Mir, M., 1982 | MR

[16] Th. Jaeck, V. A. Zagrebnov, “Exactness of the Bogoliubov approximation in random external potentials”, J. Math.Phys., 51:12 (2010), 123306, 16 pp. | DOI | MR | Zbl

[17] V. A. Zagrebnov, “The Bogoliubov $c$-number approximation for random boson systems”, Zbirnik prats In-tu matematiki NAN Ukraïni, 11:1 (2014), 123–140 | Zbl

[18] J. Ginibre, “On the asymptotic exactness of the Bogoliubov approximation for many boson systems”, Comm. Math. Phys., 8:1 (1968), 26–51 | DOI | MR | Zbl

[19] E. H. Lieb, R. Seiringer, J. Yngvason, “Justification of $c$-number substitutions in bosonic hamiltonians”, Phys. Rev. Lett., 94:8 (2005), 080401, 4 pp. | DOI

[20] A. Sütő, “Equivalence of Bose–Einstein condensation and symmetry breaking”, Phys. Rev. Lett., 94:8 (2005), 080402, 4 pp. | DOI

[21] E. H. Lieb, “The classical limit of quantum spin systems”, Commun. Math. Phys., 31:4 (1973), 327–340 | DOI | MR | Zbl

[22] R. B. Griffiths, “Spontaneous magnetization in idealized ferromagnets”, Phys. Rev., 152:1 (1966), 240–246 | DOI

[23] R. V. Kadison, “States and representations”, Trans. Amer. Math. Soc., 103:2 (1962), 304–319 | DOI | MR | Zbl

[24] A. Verbeure, V. A. Zagrebnov, “Phase transitions and algebra of fluctuation operators in an exactly soluble model of a quantum anharmonic crystal”, J. Stat. Phys., 69:1–2 (1992), 329–359 | DOI | MR | Zbl

[25] D. Goderis, A. Verbeure, P. Vets, “Non-commutative central limits”, Probab. Theory Related Fields, 82:4 (1987), 527–544 | DOI | MR

[26] D. Goderis, A. Verbeure, P. Vets, “Dynamics of fluctuations for quantum lattice systems”, Commun. Math. Phys., 128:3 (1990), 533–549 | DOI | MR | Zbl

[27] D. Goderis, P. Vets, “Central limit theorem for mixing quantum systems and the CCR-algebra of fluctuations”, Commun. Math. Phys., 122:2 (1989), 249–265 | DOI | MR | Zbl

[28] M. Requardt, “Fluctuation operators and spontaneous symmetry breaking”, J. Math. Phys., 43:1 (2002), 351–372 | DOI | MR | Zbl

[29] I. G. Brankov, V. A. Zagrebnov, N. S. Tonchev, “Opisanie predelnykh gibbsovskikh sostoyanii dlya modeli Kyuri–Veissa–Izinga”, TMF, 66:1 (1986), 109–120 | DOI | MR

[30] V. L. Aksenov, N. M. Plakida, S. Stamenkovič, Neutron Scattering by Ferroelectrics, World Sci., Singapore, 1990

[31] R. A. Minlos, E. A. Pechersky, V. A. Zagrebnov, “Analyticity of the Gibbs state for a quantum anharmonic crystal: No order parameter”, Ann. Henri Poincaré, 3:5 (2002), 921–938 | DOI | MR | Zbl

[32] S. Albeverio, Yu. Kondratiev, Yu. Kozitsky, M. Röckner, The Statistical Mechanics of Quantum Lattice Systems. A Path Integral Approach, EMS Tracts in Mathematics, 8, European Mathematical Society (EMS), Zürich, 2009 | DOI | MR | Zbl

[33] N. N. Bogolyubov (ml.), I. G. Brankov, V. A. Zagrebnov, A. M. Kurbatov, N. S. Tonchev, “Nekotorye klassy tochno reshaemykh modelnykh zadach kvantovoi statisticheskoi mekhaniki: metod approksimiruyuschego gamiltoniana”, UMN, 39:6(240) (1984), 3–45 | DOI | MR

[34] N. M. Plakida, N. S. Tonchev, “Tochno reshaemaya $d$-mernaya model strukturnogo fazovogo perekhoda”, TMF, 63:2 (1985), 270–279 | MR

[35] A. Verbeure, V. A. Zagrebnov, “No-go theorem for quantum structural phase transitions”, J. Phys. A: Math. Gen., 28:18 (1995), 5415–5421 | DOI | MR | Zbl

[36] P. Joussot, V. A. Zagrebnov, “Quantum critical fluctuations in ferroelectric model: Quasi- average approach”, J. Math. Phys., 39:2 (1998), 921–930 | DOI | MR | Zbl

[37] W. F. Wreszinski, V. A. Zagrebnov, On ergodic states, spontaneous symmetry breaking and the Bogoliubov quasi-averages, arXiv: 1607.03024

[38] G. L. Sewell, W. F. Wreszinski, “On the mathematical theory of superfluidity”, J. Phys. A: Math. Theor., 42:1 (2009), 015207, 23 pp. | DOI | MR | Zbl

[39] M. Fannes, J. V. Pulè, A. Verbeure, “On Bose condensation”, Helv. Phys. Acta, 55:4 (1982), 391–399 | DOI | MR

[40] J. V. Pulé, A. F. Verbeure, V. A. Zagrebnov, “On nonhomogeneous Bose condensation”, J. Math. Phys., 46:8 (2005), 083301, 8 pp. | DOI | MR | Zbl

[41] N. M. Hugenholtz, “States and representations in statistical mechanics”, Mathematics of Contemporary Physics, ed. R. F. Streater, Academic Press, London, New York, 1972, 145–193

[42] W. F. Wreszinski, “Passivity of ground states of quantum systems”, Rev. Math. Phys., 17:1 (2005), 1–14 | DOI | MR | Zbl

[43] G. L. Sewell, Quantum Mechanics and Its Emergent Macrophysics, Princeton Univ. Press, Princeton, NJ, 2002 | MR