@article{TMF_2018_194_1_a9,
author = {E. E. Tareyeva and Yu. D. Fomin and E. N. Tsyok and V. N. Ryzhov},
title = {Supercritical anomalies and {the~Widom} line for the~isostructural phase transition in solids},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {175--184},
year = {2018},
volume = {194},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2018_194_1_a9/}
}
TY - JOUR AU - E. E. Tareyeva AU - Yu. D. Fomin AU - E. N. Tsyok AU - V. N. Ryzhov TI - Supercritical anomalies and the Widom line for the isostructural phase transition in solids JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2018 SP - 175 EP - 184 VL - 194 IS - 1 UR - http://geodesic.mathdoc.fr/item/TMF_2018_194_1_a9/ LA - ru ID - TMF_2018_194_1_a9 ER -
%0 Journal Article %A E. E. Tareyeva %A Yu. D. Fomin %A E. N. Tsyok %A V. N. Ryzhov %T Supercritical anomalies and the Widom line for the isostructural phase transition in solids %J Teoretičeskaâ i matematičeskaâ fizika %D 2018 %P 175-184 %V 194 %N 1 %U http://geodesic.mathdoc.fr/item/TMF_2018_194_1_a9/ %G ru %F TMF_2018_194_1_a9
E. E. Tareyeva; Yu. D. Fomin; E. N. Tsyok; V. N. Ryzhov. Supercritical anomalies and the Widom line for the isostructural phase transition in solids. Teoretičeskaâ i matematičeskaâ fizika, Tome 194 (2018) no. 1, pp. 175-184. http://geodesic.mathdoc.fr/item/TMF_2018_194_1_a9/
[1] R. Balesku, Ravnovesnaya i neravnovesnaya statisticheskaya mekhanika, v. 1,\;2, Mir, M., 1978 | MR | Zbl
[2] J. P. Hansen, I. R. McDonald, Theory of Simple Liquids, Academic Press, New York, 1986 | Zbl
[3] V. V. Brazhkin, V. N. Ryzhov, “Van der Waals supercritical fluid: exact formulas for special lines”, J. Chem. Phys., 135:8 (2011), 084503 | DOI
[4] V. V. Brazhkin, V. N. Ryzhov, “Erratum: ‘Van der Waals supercritical fluid: exact formulas for special lines’”, J. Chem. Phys., 145:5 (2016), 059901 | DOI
[5] A. Daanoun, C. F. Tejero, M. Baus, “Van der Waals theory for solids”, Phys. Rev. E, 50:4 (1994), 2913–2924 | DOI
[6] Supercritical Fluids. Fundamentals and Applications, Nato Science Series E, 366, eds. E. Kiran, P. G. Debenedetti, C. J. Peters (eds.), Springer, Dordrecht, 2000 | DOI
[7] V. V. Brazhkin, A. G. Lyapin, V. N. Ryzhov, K. Trachenko, Yu. D. Fomin, E. N. Tsiok, “Gde nakhoditsya oblast sverkhkriticheskogo flyuida na fazovoi diagramme?”, UFN, 182:11 (2012), 1137–1156 | DOI | DOI
[8] G. Stenli, Fazovye perekhody i kriticheskie yavleniya, Mir, M., 1973
[9] L. Xu, P. Kumar, S. V. Buldyrev, S.-H. Chen, P. H. Poole, E. Sciortino, H. E. Stanley, “Relation between the Widom line and the dynamic crossover in systems with a liquid-liquid phase transition”, Proc. Natl. Acad. Sci. USA, 102:46 (2005), 16558–16562 | DOI
[10] P. H. Poole, S. R. Becker, F. Sciortino, F. W. Starr, “Dynamical behavior near a liquid–liquid phase transition in simulations of supercooled water”, J. Phys. Chem. B, 115:48 (2011), 14176–14183 | DOI
[11] G. Franzese, H. E. Stanley, “The Widom line of supercooled water”, J. Phys.: Condens. Matter, 19:20 (2007), 205126, 16 pp. | DOI
[12] P. F. McMillan, E. H. Stanley, “Fluid phases: going supercritical”, Nature Phys., 6 (2010), 479–480 | DOI
[13] G. G. Simeoni, T. Bryk, F. A. Gorelli, M. Krisch, G. Ruocco, M. Santoro, T. Scopigno, “The Widom line as the crossover between liquid-like and gas-like behaviour in supercritical fluids”, Nature Phys., 6 (2010), 503–507 | DOI
[14] F. A. Gorelli, T. Bryk, M. Krisch, G. Ruocco, M. Santoro, T. Scopigno, “Dynamics and thermodynamics beyond the critical point”, Sci. Rep., 3 (2013), 1203, 5 pp. | DOI
[15] V. V. Brazhkin, Yu. D. Fomin, A. G. Lyapin, V. N. Ryzhov, E. N. Tsiok, “Widom line for the liquid-gas transition in Lennard-Jones System”, J. Phys. Chem. B, 115:48 (2011), 14112–14115 | DOI
[16] V. V. Brazhkin, Yu. D. Fomin, V. N. Ryzhov, E. E. Tareyeva, E. N. Tziok, “True Widom line for a square-well system”, Phys. Rev. E, 89:4 (2014), 042136 | DOI
[17] P. Gallo, D. Corradini, M. Rovere, “Fragile to strong crossover at the Widom line in supercooled aqueous solutions of NaCl”, J. Chem. Phys., 139:20 (2013), 204503 | DOI
[18] G. Ruppeiner, A. Sahay, T. Sarkar, G. Sengupta, “Thermodynamic geometry, phase transitions, and the Widom line”, Phys. Rev. E, 86:5 (2012), 052103, 4 pp. | DOI
[19] H.-O. May, P. Mausbach, “Riemannian geometry study of vapor–liquid phase equilibria and supercritical behavior of the Lennard-Jones fluid”, Phys. Rev. E, 85:3 (2012), 031201, 9 pp. | DOI
[20] Yu. D. Fomin, V. N. Ryzhov, E. N. Tsiok, V. V. Brazhkin, “Thermodynamic properties of supercritical carbon dioxide: Widom and Frenkel lines”, Phys. Rev. E, 91:2 (2015), 022111, 5 pp. | DOI
[21] Y. D. Fomin, V. N. Ryzhov, E. N. Tsiok, V. V. Brazhkin, K. Trachenko, “Dynamic transition in supercritical iron”, Sci. Rep., 4 (2014), 7194, 5 pp. | DOI
[22] Yu. D. Fomin, V. N. Ryzhov, E. N. Tsiok, V. V. Brazhkin, “Dynamical crossover line in supercritical water”, Sci. Rep., 5 (2015), 14234, 6 pp. | DOI
[23] E. E. Tareeva, V. N. Ryzhov, “Zakriticheskaya zhidkost chastits s potentsialom Yukavy: novoe priblizhenie dlya pryamoi korrelyatsionnoi funktsii i liniya Vidoma”, TMF, 189:3 (2016), 464–476 | DOI | DOI | MR
[24] H. Xia, A. L. Ruoff, Y. K. Vohra, “Temperature dependence of the ?-bcc phase transition in zirconium metal”, Phys. Rev. B, 44:18 (1991), 10374–10376 | DOI
[25] P. Bolhuis, D. Frenkel, “Prediction of an expanded-to-condensed transition in colloidal crystals”, Phys. Rev. Lett., 72:14 (1994), 2211–2214 | DOI
[26] P. Bolhuis, D. Frenkel, “Isostructural solid-solid transition in crystalline systems with short-ranged interaction”, Phys. Rev. E, 50:6 (1995), 4880–4890 | DOI
[27] D. Frenkel, “Colloidal encounters: a matter of attraction”, Science, 314:5800 (2006), 768–769 | DOI
[28] C. F. Tejero, A. Daanoun, H. N. W. Lekkerkerker, M. Baus, “Phase diagrams of 'simple' fluids with extreme pair potentials”, Phys. Rev. Lett., 73:5 (1994), 752–755 | DOI
[29] C. F. Tejero, A. Daanoun, H. N. W. Lekkerkerker, M. Baus, “Isostructural solid-solid transition of (colloidal) simple fluids”, Phys. Rev. E, 51:1 (1995), 558–566 | DOI
[30] C. Rascón, L. Mederos, G. Navascués, “Solid-to-solid isostructural transition in the hard sphere/attractive Yukawa system”, J. Chem. Phys., 103:22 (1995), 9495 | DOI
[31] C. Rascón, L. Mederos, G. Navascués, L. Mederos, “Phase transitions in systems with extremely short-ranged attractions: a density-functional theory”, Phys. Rev. B, 51:21 (1995), 14899–14906 | DOI
[32] A. R. Denton, H. Löwen, “Isostructural solid–solid transitions in square–shoulder systems”, J. Phys.: Condens. Matter, 9:1 (1997), L1–L5 | DOI