@article{TMF_2018_194_1_a8,
author = {V. L. Aksenov and T. V. Tropin and J. W. P. Schmelzer},
title = {Kinetic equations for describing the~liquid{\textendash}glass transition in},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {168--174},
year = {2018},
volume = {194},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2018_194_1_a8/}
}
TY - JOUR AU - V. L. Aksenov AU - T. V. Tropin AU - J. W. P. Schmelzer TI - Kinetic equations for describing the liquid–glass transition in JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2018 SP - 168 EP - 174 VL - 194 IS - 1 UR - http://geodesic.mathdoc.fr/item/TMF_2018_194_1_a8/ LA - ru ID - TMF_2018_194_1_a8 ER -
V. L. Aksenov; T. V. Tropin; J. W. P. Schmelzer. Kinetic equations for describing the liquid–glass transition in. Teoretičeskaâ i matematičeskaâ fizika, Tome 194 (2018) no. 1, pp. 168-174. http://geodesic.mathdoc.fr/item/TMF_2018_194_1_a8/
[1] T. V. Tropin, Yu. V. P. Shmeltser, V. L. Aksenov, “Sovremennye aspekty kineticheskoi teorii steklovaniya”, UFN, 186:1 (2016), 47–73 | DOI | DOI
[2] O. S. Narayanaswamy, “A model of structural relaxation in glass”, J. Am. Ceram. Soc., 54:10 (1971), 491–498 | DOI
[3] O. V. Mazurin, Steklovanie, Nauka, L., 1986
[4] J. H. Gibbs, E. A. DiMarzio, “Nature of the glass transition and the glassy state”, J. Chem. Phys., 28:3 (1958), 373–383 | DOI
[5] G. Adam, J. H. Gibbs, “On the temperature dependence of cooperative relaxation properties in glass-forming liquids”, J. Chem. Phys., 43:1 (1965), 139–146 | DOI
[6] V. Lubchenko, “Theory of the structural glass transition: a pedagogical review”, Adv. Phys., 64:3 (2015), 283–443 | DOI
[7] I. Prigozhin, R. Defei, Khimicheskaya termodinamika, Nauka, M., 1966
[8] T. V. Tropin, J. W. P. Schmelzer, C. Schick, “On the dependence of the properties of glasses on cooling and heating rates II. Prigogine–Defay ratio, fictive temperature, and fictive pressure”, J. Non-Cryst. Solids, 357:4 (2011), 1303–1309 | DOI
[9] I. S. Gutzow, J. W. P. Schmelzer, The Vitreous State: Thermodynamics, Structure, Rheology and Crystallization, Springer, Berlin, Heidelberg, 2013
[10] T. V. Tropin, G. Schulz, J. W. P. Schmelzer, C. Schick, “Heat capacity measurements and modeling of polystyrene glass transition in a wide range of cooling rates”, J. Non-Cryst. Solids, 409:1 (2015), 63–75 | DOI
[11] L. I. Mandelshtam, M. A. Leontovich, “K teorii pogloscheniya zvuka v zhidkostyakh”, ZhETF, 7:3 (1937), 438–444
[12] T. de Donder, P. van Rysselberghe, Thermodynamic Theory of Affinity, Stanford Univ. Press, Stanford, 1936
[13] J. Möller, I. Gutzow, J. W. P. Schmelzer, “Freezing-in and production of entropy in vitrification”, J. Chem. Phys., 125:9 (2006), 094505 | DOI
[14] I. Gutzow, T. Grigorova, I. Avramov, J. W. P. Schmelzer, “Generic phenomenology of vitrification and relaxation and the Kohlrausch and Maxwell equations”, Phys. Chem. Glasses, 43C (2002), 477–486
[15] A. Wisitsorasak, P. G. Wolynes, “Dynamical heterogeneity of the glassy state”, J. Phys. Chem. B, 118:28 (2014), 7835–7847 | DOI
[16] B. Petroff, A. Milchev, I. Gutzow, “Thermodynamic functions of both simple (monomeric) and polymeric melts: MFA approach and Monte Carlo simulation”, J. Macromol. Sci. B, 35:5 (1996), 763–794 | DOI