Kinetic equations for describing the liquid–glass transition in
Teoretičeskaâ i matematičeskaâ fizika, Tome 194 (2018) no. 1, pp. 168-174 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We present a theoretical approach based on nonequilibrium thermodynamics and used to describe the kinetics of the transition from the liquid to the glassy state (glass transition). In the framework of this approach, we construct kinetic equations describing the time and temperature evolution of the structural parameter. We discuss modifications of the equations required for taking the nonexponential, nonlinear character of the relaxation in the vitrification region into account. To describe the formation of polymer glasses, we present modified expressions for the system relaxation time. We compare the obtained results with experimental data, measurements of the polystyrene glass transition for different cooling rates using the method of differential scanning calorimetry. We discuss prospects for developing a method for describing the polymer glass transition.
Keywords: vitrification kinetics, polymer, kinetic equation, nonequilibrium thermodynamics.
@article{TMF_2018_194_1_a8,
     author = {V. L. Aksenov and T. V. Tropin and J. W. P. Schmelzer},
     title = {Kinetic equations for describing the~liquid{\textendash}glass transition in},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {168--174},
     year = {2018},
     volume = {194},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2018_194_1_a8/}
}
TY  - JOUR
AU  - V. L. Aksenov
AU  - T. V. Tropin
AU  - J. W. P. Schmelzer
TI  - Kinetic equations for describing the liquid–glass transition in
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2018
SP  - 168
EP  - 174
VL  - 194
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2018_194_1_a8/
LA  - ru
ID  - TMF_2018_194_1_a8
ER  - 
%0 Journal Article
%A V. L. Aksenov
%A T. V. Tropin
%A J. W. P. Schmelzer
%T Kinetic equations for describing the liquid–glass transition in
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2018
%P 168-174
%V 194
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2018_194_1_a8/
%G ru
%F TMF_2018_194_1_a8
V. L. Aksenov; T. V. Tropin; J. W. P. Schmelzer. Kinetic equations for describing the liquid–glass transition in. Teoretičeskaâ i matematičeskaâ fizika, Tome 194 (2018) no. 1, pp. 168-174. http://geodesic.mathdoc.fr/item/TMF_2018_194_1_a8/

[1] T. V. Tropin, Yu. V. P. Shmeltser, V. L. Aksenov, “Sovremennye aspekty kineticheskoi teorii steklovaniya”, UFN, 186:1 (2016), 47–73 | DOI | DOI

[2] O. S. Narayanaswamy, “A model of structural relaxation in glass”, J. Am. Ceram. Soc., 54:10 (1971), 491–498 | DOI

[3] O. V. Mazurin, Steklovanie, Nauka, L., 1986

[4] J. H. Gibbs, E. A. DiMarzio, “Nature of the glass transition and the glassy state”, J. Chem. Phys., 28:3 (1958), 373–383 | DOI

[5] G. Adam, J. H. Gibbs, “On the temperature dependence of cooperative relaxation properties in glass-forming liquids”, J. Chem. Phys., 43:1 (1965), 139–146 | DOI

[6] V. Lubchenko, “Theory of the structural glass transition: a pedagogical review”, Adv. Phys., 64:3 (2015), 283–443 | DOI

[7] I. Prigozhin, R. Defei, Khimicheskaya termodinamika, Nauka, M., 1966

[8] T. V. Tropin, J. W. P. Schmelzer, C. Schick, “On the dependence of the properties of glasses on cooling and heating rates II. Prigogine–Defay ratio, fictive temperature, and fictive pressure”, J. Non-Cryst. Solids, 357:4 (2011), 1303–1309 | DOI

[9] I. S. Gutzow, J. W. P. Schmelzer, The Vitreous State: Thermodynamics, Structure, Rheology and Crystallization, Springer, Berlin, Heidelberg, 2013

[10] T. V. Tropin, G. Schulz, J. W. P. Schmelzer, C. Schick, “Heat capacity measurements and modeling of polystyrene glass transition in a wide range of cooling rates”, J. Non-Cryst. Solids, 409:1 (2015), 63–75 | DOI

[11] L. I. Mandelshtam, M. A. Leontovich, “K teorii pogloscheniya zvuka v zhidkostyakh”, ZhETF, 7:3 (1937), 438–444

[12] T. de Donder, P. van Rysselberghe, Thermodynamic Theory of Affinity, Stanford Univ. Press, Stanford, 1936

[13] J. Möller, I. Gutzow, J. W. P. Schmelzer, “Freezing-in and production of entropy in vitrification”, J. Chem. Phys., 125:9 (2006), 094505 | DOI

[14] I. Gutzow, T. Grigorova, I. Avramov, J. W. P. Schmelzer, “Generic phenomenology of vitrification and relaxation and the Kohlrausch and Maxwell equations”, Phys. Chem. Glasses, 43C (2002), 477–486

[15] A. Wisitsorasak, P. G. Wolynes, “Dynamical heterogeneity of the glassy state”, J. Phys. Chem. B, 118:28 (2014), 7835–7847 | DOI

[16] B. Petroff, A. Milchev, I. Gutzow, “Thermodynamic functions of both simple (monomeric) and polymeric melts: MFA approach and Monte Carlo simulation”, J. Macromol. Sci. B, 35:5 (1996), 763–794 | DOI