Static charge susceptibility in the $t$$J$$V$ model
Teoretičeskaâ i matematičeskaâ fizika, Tome 194 (2018) no. 1, pp. 151-167 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We describe the static charge susceptibility and correlation function of the charge density in the two-dimensional $t$$J$$V$ model based on the method of equations of motion for the relaxation functions of the Hubbard operators. We obtain the dependence of the susceptibility and correlation function on the hole concentration and temperature. Charge density waves can develop if the intersite Coulomb interaction is sufficiently strong.
Keywords: strong electron correlation, charge susceptibility, high-temperature superconductivity, $t$–$J$–$V$ model.
@article{TMF_2018_194_1_a7,
     author = {Dan Tung Ngun and N. M. Plakida},
     title = {Static charge susceptibility in the~$t${\textendash}$J${\textendash}$V$ model},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {151--167},
     year = {2018},
     volume = {194},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2018_194_1_a7/}
}
TY  - JOUR
AU  - Dan Tung Ngun
AU  - N. M. Plakida
TI  - Static charge susceptibility in the $t$–$J$–$V$ model
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2018
SP  - 151
EP  - 167
VL  - 194
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2018_194_1_a7/
LA  - ru
ID  - TMF_2018_194_1_a7
ER  - 
%0 Journal Article
%A Dan Tung Ngun
%A N. M. Plakida
%T Static charge susceptibility in the $t$–$J$–$V$ model
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2018
%P 151-167
%V 194
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2018_194_1_a7/
%G ru
%F TMF_2018_194_1_a7
Dan Tung Ngun; N. M. Plakida. Static charge susceptibility in the $t$–$J$–$V$ model. Teoretičeskaâ i matematičeskaâ fizika, Tome 194 (2018) no. 1, pp. 151-167. http://geodesic.mathdoc.fr/item/TMF_2018_194_1_a7/

[1] N. N. Bogolyubov, S. V. Tyablikov, “Zapazdyvayuschie i operezhayuschie funktsii Grina v statisticheskoi fizike”, Dokl. AN SSSR, 126 (1959), 53–58 | MR | Zbl

[2] S. V. Tyablikov, Metody kvantovoi teorii magnetizma, Nauka, M., 1975 | MR

[3] D. N. Zubarev, “Dvukhvremennye funktsii Grina v statisticheskoi fizike”, UFN, 71:1 (1960), 71–116 | DOI | DOI

[4] D. N. Zubarev, V. G. Morozov, G. Repke, Statisticheskaya mekhanika neravnovesnykh protsessov, v. 1, Fizmatlit, M., 2002 | MR | Zbl

[5] H. Mori, “A continued-fraction representation of the time-correlation functions”, Prog. Theor. Phys., 34:3 (1965), 399–416 | DOI | MR

[6] N. M. Plakida, “Projection operator method”, Strongly Correlated Systems. Theoretical Methods, Springer Series in Solid–State Sciences, 171, eds. A. Avella, F. Mancini, Springer, Berlin, Heidelberg, 2011, 173–202 | DOI | MR

[7] N. M. Plakida, “Dvukhvremennye funktsii Grina i diagrammnaya tekhnika”, TMF, 168:3 (2011), 518–535 | DOI | DOI | Zbl

[8] A. A. Vladimirov, D. Ihle, N. M. Plakida, “Dynamic spin susceptibility in the $t$–$J$ model”, Phys. Rev. B, 80:10 (2009), 104425, 12 pp. | DOI

[9] A. A. Vladimirov, D. Ihle, N. M. Plakida, “Dynamic spin susceptibility of superconducting cuprates: a microscopic theory of the magnetic resonance mode”, Phys. Rev. B, 83:1 (2011), 024411, 13 pp. | DOI

[10] A. A. Vladimirov, D. Ihle, N. M. Plakida, “Optical and dc conductivities of cuprates: spin-fluctuation scattering in the $t$–$J$ model”, Phys. Rev. B, 85:22 (2012), 224536, 12 pp. | DOI

[11] S. Blanco-Canosa, A. Frano, E. Schierle, J. Porras, T. Loew, M. Minola, M. Bluschke, E. Weschke, B. Keimer, M. Le Tacon1, “Resonant x-ray scattering study of charge-density wave correlations in YBa$_2$Cu$_3$O$_{6+x}$”, Phys. Rev. B, 90:5 (2014), 054513, 13 pp. | DOI

[12] M. Hücker, N. B. Christensen, A. T. Holmes, E. Blackburn, E. M. Forgan, Ruixing Liang, D. A. Bonn, W. N. Hardy, O. Gutowski, M. v. Zimmermann, S. M. Hayden, J. Chang, “Competing charge, spin, and superconducting orders in underdoped YBa$_2$Cu$_3$O$_{y}$”, Phys. Rev. B, 90:5 (2014), 054514, 11 pp. | DOI

[13] R. Comin, R. Sutarto, F. He, E. H. da Silva Neto, L. Chauviere, A. Frano, R. Liang, W. N. Hardy, D. A. Bonn, Y. Yoshida, H. Eisaki, A. J. Achkar, D. G. Hawthorn, B. Keimer, G. A. Sawatzky, A. Damascelli, “Symmetry of charge order in cuprates”, Nature Materials, 14 (2015), 796–800 | DOI

[14] R. Comin, R. Sutarto, E. H. da Silva Neto, L. Chauviere, R. Liang, W. N. Hardy, D. A. Bonn, F. He, G. A. Sawatzky, A. Damascelli, “Broken translational and rotational symmetry via charge stripe order in underdoped YBa$_2$Cu$_3$O$_{6+y}$”, Science, 347:6228 (2015), 1335–1339 | DOI

[15] R. Comin, A. Frano, M. M. Yee, Y. Yoshida, H. Eisaki, E. Schierle, E. Weschke, R. Sutarto, F. He, A. Soumyanarayanan, Y. He, M. Le Tacon, I. S. Elfimov, J. E. Hoffman, G. A. Sawatzky, B. Keimer, A. Damascelli, “Charge order driven by Fermi-arc instability in Bi$_2$Sr$_{2-x}$La$_x$CuO$_{6+d}$”, Science, 343:6169 (2014), 390–392 | DOI

[16] M. Hashimoto, G. Ghiringhelli, W.-S. Lee, G. Dellea, A. Amorese, C. Mazzoli, K. Kummer, N. B. Brookes, B. Moritz, Y. Yoshida, H. Eisaki, Z. Hussain, T. P. Devereaux, Z.-X. Shen, L. Braicovich, “Direct observation of bulk charge modulations in optimally doped Bi$_{1.5}$Pb$_{0.6}$Sr$_{1.54}$CaCu$_{2}$O$_{8+\delta}$”, Phys. Rev. B, 89:22 (2014), 220511, 5 pp. | DOI

[17] E. H. da Silva Neto, P. Aynajian, A. Frano, R. Comin, E. Schierle, E. Weschke, A. Gyenis, J. Wen, J. Schneeloch, Z. Xu, S. Ono, G. Gu, M. Le Tacon, A. Yazdani, “Ubiquitous interplay between charge ordering and high-temperature superconductivity in cuprates”, Science, 343:6169 (2014), 393–396 | DOI

[18] M. H. Hamidian, S. D. Edkins, C. K. Kim, J. C. Davis, A. P. Mackenzie, H. Eisaki, S. Uchida, M. J. Lawler, E.-A. Kim, S. Sachdev, K. Fujita, “Atomic-scale electronic structure of the cuprate $d$-symmetry form factor density wave state”, Nat. Phys., 12 (2016), 150–155 | DOI

[19] W. Tabis, Y. Li, M. Le Tacon, L. Braicovich, A. Kreyssig, M. Minola, G. Dellea, E. Weschke, M. J. Veit, M. Ramazanoglu, A. I. Goldman, T. Schmitt, G. Ghiringhelli, N. Barisic, M. K. Chan, C. J. Dorow, G. Yu, X. Zhao, B. Keimer, M. Greven, “Charge order and its connection with Fermi-liquid charge transport in a pristine high-$T_\mathrm{c}$ cuprate”, Nature Commun., 5 (2014), 5875, 6 pp. | DOI

[20] G. Campi, A. Bianconi, N. Poccia, G. Bianconi, L. Barba, G. Arrighetti, D. Innocenti, J. Karpinski, N. D. Zhigadlo, S. M. Kazakov, M. Burghammer, M. v. Zimmermann, M. Sprung, A. Ricci, “Inhomogeneity of charge-density-wave order and quenched disorder in a high-$T+\mathrm{c}$ superconductor”, Nature, 525 (2015), 359–362 | DOI

[21] P. A. Volkov, K. B. Efetov, “Spin-fermion model with overlapping hot spots and charge modulation in cuprates”, Phys. Rev. B, 93:8 (2016), 085131, 21 pp. | DOI

[22] I. Eremin, M. Eremin, S. Varlamov, D. Brinkmann, M. Mali, J. Roos, “Spin susceptibility and pseudogap in YBa$_2$Cu$_4$O$_8$: an approach via a charge-density-wave instability”, Phys. Rev. B, 56:17 (1997), 11305–11311 | DOI

[23] S. V. Varlamov, M. V. Eremin, I. M. Eremin, “K teorii psevdoscheli v spektre elementarnykh vozbuzhdenii normalnoi faze bisloinykh kupratov”, Pisma v ZhETF, 66:8 (1997), 533–538 | DOI

[24] M. Eremin, S. Varlamov, I. Eremin, “Magnitude of spin and charge density wave amplitudes in underdoped cuprates”, Appl. Magn. Reson., 19:3–4 (2000), 355–362 | DOI

[25] M. V. Eremin, M. A. Malakhov, “Effektivnoe kulonovskoe vzaimodeistvie elektronov v kupratakh”, Izv. RAN. Cer. fiz., 78:9 (2014), 1183–1186 | DOI

[26] M. V. Eremin, M. A. Malakhov, “Dinamicheskaya zaryadovaya vospriimchivost i smyagchenie prodolnoi fononnoi mody v kupratakh”, Pisma v ZhETF, 100:5 (2014), 362–365 | DOI | DOI

[27] M. V. Eremin, D. A. Syunyaev, “Temperaturnaya zavisimost glubiny proniknoveniya magnitnogo polya pri nalichii dispersii u parametrov poryadka sverkhprovodimosti i voln zaryadovykh plotnostei”, Pisma v ZhETF, 103:3 (2016), 209–213 | DOI | DOI

[28] M. Eremin, I. Eremin, S. Varlamov, “Dynamical charge susceptibility in layered cuprates: beyond the conventional random-phase-approximation scheme”, Phys. Rev. B, 64:21 (2001), 214512, 7 pp. | DOI

[29] E. Bulut, “$d_{x^2-y^2}$ superconductivity and the Hubbard model”, Adv. Phys., 51:7 (2002), 1587–1667 | DOI

[30] W. Götze, P. Wölfle, “Homogeneous dynamical conductivity of simple metals”, Phys. Rev. B, 6:4 (1972), 1226–1238 | DOI

[31] D. Forster, Hydrodynamic Fluctuations, Broken Symmetry and Correlation Functions, Benjamin, New York, 1975

[32] Yu. A. Tserkovnikov, “O metode resheniya beskonechnykh sistem uravnenii dlya dvukhvremennykh temperaturnykh funktsii Grina”, TMF, 49:2 (1981), 219–233 | DOI | MR

[33] G. Jackeli, N. M. Plakida, “Charge dynamics and optical conductivity of the $t$–$J$ model”, Phys. Rev. B, 60:8 (1999), 5266–5275 | DOI

[34] N. M. Plakida, V. S. Oudovenko, “Electron spectrum and superconductivity in the $t$–$J$ model at moderate doping”, Phys. Rev. B, 59:18 (1999), 11949–11961 | DOI

[35] J. Hubbard, “Electron correlations in narrow energy bands. IV. The atomic representation”, Proc. Roy. Soc. Ser. A, 285 (1965), 542–560 | DOI | MR

[36] Yu. A. Izyumov, Yu. N. Skryabin, Statisticheskaya mekhanika magnitouporyadochennykh sistem, Nauka, M., 1987 | MR | MR

[37] N. M. Plakida, V. S. Oudovenko, “Electronic spectrum in high-temperature cuprate superconductors”, ZhETF, 131:2 (2007), 259–274 | DOI

[38] N. M. Plakida, V. S. Oudovenko, “On the theory of superconductivity in the extended Hubbard model. Spin-fluctuation pairing”, Eur. Phys. J. B, 86 (2013), 115, 15 pp. | DOI

[39] L. F. Feiner, J. H. Jefferson, R. Raimondi, “Effective single-band models for the high-$T_\mathrm{c}$ cuprates. I. Coulomb interactions”, Phys. Rev. B, 53:13 (1996), 8751–8773 | DOI