Memory effects and nonequilibrium correlations in the dynamics of open quantum systems
Teoretičeskaâ i matematičeskaâ fizika, Tome 194 (2018) no. 1, pp. 127-136 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We propose a systematic approach to the dynamics of open quantum systems in the framework of Zubarev's nonequilibrium statistical operator method. The approach is based on the relation between ensemble means of the Hubbard operators and the matrix elements of the reduced statistical operator of an open quantum system. This key relation allows deriving master equations for open systems following a scheme conceptually identical to the scheme used to derive kinetic equations for distribution functions. The advantage of the proposed formalism is that some relevant dynamical correlations between an open system and its environment can be taken into account. To illustrate the method, we derive a non-Markovian master equation containing the contribution of nonequilibrium correlations associated with energy conservation.
Keywords: nonequilibrium statistical mechanics, nonequilibrium statistical operator method, open quantum system.
@article{TMF_2018_194_1_a5,
     author = {V. G. Morozov},
     title = {Memory effects and nonequilibrium correlations in the~dynamics of open quantum systems},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {127--136},
     year = {2018},
     volume = {194},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2018_194_1_a5/}
}
TY  - JOUR
AU  - V. G. Morozov
TI  - Memory effects and nonequilibrium correlations in the dynamics of open quantum systems
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2018
SP  - 127
EP  - 136
VL  - 194
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2018_194_1_a5/
LA  - ru
ID  - TMF_2018_194_1_a5
ER  - 
%0 Journal Article
%A V. G. Morozov
%T Memory effects and nonequilibrium correlations in the dynamics of open quantum systems
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2018
%P 127-136
%V 194
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2018_194_1_a5/
%G ru
%F TMF_2018_194_1_a5
V. G. Morozov. Memory effects and nonequilibrium correlations in the dynamics of open quantum systems. Teoretičeskaâ i matematičeskaâ fizika, Tome 194 (2018) no. 1, pp. 127-136. http://geodesic.mathdoc.fr/item/TMF_2018_194_1_a5/

[1] H.-P. Breuer, F. Petruccione, The Theory of Open Quantum Systems, Oxford Univ. Press, Oxford, 2002 | MR | Zbl

[2] U. Weiss, Quantum Dissipative Systems, Series in Modern Condensed Matter Physics, 13, World Sci., Singapore, 2008 | Zbl

[3] Á. Rivas, S. F. Huelga, Open Quantum Systems. An Introduction, Springer, Heidelberg, 2012 | MR | Zbl

[4] H. Carmichael, An Open Systems Approach to Quantum Optics, Springer, Berlin, 1993 | Zbl

[5] C. W. Gardiner, P. Zoller, Quantum Noise. A handbook of Markovian and non-Markovian quantum stochastic methods with applications to quantum optics, Springer, Berlin, 2004 | MR | Zbl

[6] V. May, O. Kühn, Charge and Energy Transfer Dynamics in Molecular Systems, Wiley, Weinheim, 2004

[7] A. Nitzan, Chemical Dynamics in Condensed Phases: Relaxation, Transfer, and Reactions in Condensed Molecular Systems, Oxford Univ. Press, New York, 2006

[8] M. A. Nielsen, I. L. Chuang, Quantum Computation and Quantum Information, Cambridge Univ. Press, Cambridge, 2000 | MR | Zbl

[9] H.-P. Breuer, E.-M. Laine, J. Piilo, B. Vacchini, “Colloquium: Non-Markovian dynamics in open quantum systems”, Rev. Modern Phys., 88:2 (2016), 021002, 24 pp. | DOI

[10] B. Vacchini, G. Amato, “Reduced dynamical maps in the presence of initial correlations”, Sci. Rep., 6 (2016), 37328, 12 pp. | DOI

[11] S. Nakajima, “On quantum theory of transport phenomena: Steady diffusion”, Progr. Theor. Phys., 20:6 (1958), 948–959 | DOI | MR | Zbl

[12] R. Zwanzig, “Ensemble method in the theory of irreversibility”, J. Chem. Phys., 33:5 (1960), 1338–1341 | DOI | MR

[13] H. P. Breuer, D. Burgarth, F. Petruccione, “Non-Markovian dynamics in a spin star system: exact solution and approximation techniques”, Phys. Rev. B, 70:4 (2004), 045323, 10 pp. | DOI

[14] D. N. Zubarev, Neravnovesnaya statisticheskaya termodinamika, Nauka, M., 1971 | MR

[15] D. N. Zubarev, V. G. Morozov, G. Repke, Statisticheskaya mekhanika neravnovesnykh protsessov, v. 1, Fizmatlit, M., 2002 | MR

[16] D. N. Zubarev, V. G. Morozov, G. Repke, Statisticheskaya mekhanika neravnovesnykh protsessov, v. 2, Fizmatlit, M., 2002 | MR

[17] R. Luzzi, Á. R. Vasconcellos, J. G. Ramos, Predictive Statistical Mechanics. A Nonequilibrium Ensemble Formalism, Fundamental Theories of Physics, 122, Kluwer, Dordrecht, 2002 | MR

[18] J. Hubbard, “Electron correlations in narrow energy bands. IV. The atomic representation”, Proc. Roy. Soc. London Ser. A, 285:1403 (1965), 542–560 | DOI | MR

[19] V. G. Morozov, G. Röpke, “Non-Markovian quantum kinetics and conservation laws”, J. Statist. Phys., 102:1–2 (2001), 285–313 | DOI | MR | Zbl

[20] R. Luzzi, Á.R. Vasconcellos, J. Casas-Vazquez, D. Jou, “Characterization and measurement of a nonequilibrium temperature-like variable in irreversible thermodynamics”, Phys. A, 234:3–4 (1997), 699–714 | DOI