Electrical conductivity of charged particle systems and Zubarev's nonequilibrium statistical operator method
Teoretičeskaâ i matematičeskaâ fizika, Tome 194 (2018) no. 1, pp. 90-126 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

One of the fundamental problems in physics that are not yet rigorously solved is the statistical mechanics of nonequilibrium processes. An important contribution to describing irreversible behavior starting from reversible Hamiltonian dynamics was given by D. N. Zubarev, who invented the method of the nonequilibrium statistical operator. We discuss this approach, in particular, the extended von Neumann equation, and as an example consider the electrical conductivity of a system of charged particles. We consider the selection of the set of relevant observables. We show the relation between kinetic theory and linear response theory. Using thermodynamic Green's functions, we present a systematic treatment of correlation functions, but the convergence needs investigation. We compare different expressions for the conductivity and list open questions.
Keywords: nonequilibrium statistical operator, electrical conductivity, linear response theory, kinetic theory, Kubo–Greenwood approach.
@article{TMF_2018_194_1_a4,
     author = {G. R\"opke},
     title = {Electrical conductivity of charged particle systems and {Zubarev's} nonequilibrium statistical operator method},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {90--126},
     year = {2018},
     volume = {194},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2018_194_1_a4/}
}
TY  - JOUR
AU  - G. Röpke
TI  - Electrical conductivity of charged particle systems and Zubarev's nonequilibrium statistical operator method
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2018
SP  - 90
EP  - 126
VL  - 194
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2018_194_1_a4/
LA  - ru
ID  - TMF_2018_194_1_a4
ER  - 
%0 Journal Article
%A G. Röpke
%T Electrical conductivity of charged particle systems and Zubarev's nonequilibrium statistical operator method
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2018
%P 90-126
%V 194
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2018_194_1_a4/
%G ru
%F TMF_2018_194_1_a4
G. Röpke. Electrical conductivity of charged particle systems and Zubarev's nonequilibrium statistical operator method. Teoretičeskaâ i matematičeskaâ fizika, Tome 194 (2018) no. 1, pp. 90-126. http://geodesic.mathdoc.fr/item/TMF_2018_194_1_a4/

[1] L. Boltsman, Lektsii po teorii gazov, Ripol Klassik, M., 2013 | Zbl

[2] N. N. Bogolyubov, Problemy dinamicheskoi teorii v statisticheskoi fizike, Gostekhteorizdat, M., L., 1946 | MR

[3] D. N. Zubarev, Neravnovesnaya statisticheskaya termodinamika, Nauka, M., 1971 ; “Статистический оператор для неравновесных систем”, Докл. АН СССР, 140:1 (1961), 92–95 | MR | MR | Zbl

[4] D. Zubarev, V. Morozov, G. Röpke, Statistical Mechanics of Nonequilibrium Processes, v. 1, Basic Concepts, Kinetic Theory, Akademie-Verlag, Berlin, 1996 | MR

[5] D. Zubarev, V. Morozov, G. Röpke, Statistical Mechanics of Nonequilibrium Processes, v. 2, Relaxation and Hydrodynamic Processes, Akademie-Verlag, Berlin, 1997 | MR

[6] D. N. Zubarev, “Dvukhvremennye funktsii Grina v statisticheskoi fizike”, UFN, 71:1 (1960), 71–116 | DOI

[7] R. Lutstsi, A. R. Vaskonchellos, Kh. G. Ramos, K. G. Rodrigez, “Statisticheskaya termodinamika neobratimykh protsessov v ramkakh metoda neravnovesnogo statisticheskogo operatora Zubareva”, TMF, 194:1 (2018), 7–36

[8] A. L. Kuzemskii, “Metod neravnovesnogo statisticheskogo operatora i obobschennye kineticheskie uravneniya”, TMF, 194:1 (2018), 39–70

[9] V. V. Ryazanov, “Lifetime distributions in the methods of non-equilibrium statistical operator and superstatistics”, Eur. Phys. J. B, 72:4 (2009), 629–639 | DOI

[10] G. Röpke, “Quantum-statistical approach to the electrical conductivity of dense, high-temperature plasmas”, Phys. Rev. A, 38:6 (1988), 3001–3016 | DOI

[11] G. Repke, Neravnovesnaya statisticheskaya mekhanika, Mir, M., 1990 | MR

[12] R. Redmer, “Physical properties of dense, low-temperature plasmas”, Phys. Rep., 282:2–3 (1997), 35–157 | DOI

[13] H. Reinholz, “Dielectric and optical properties of dense plasmas”, Ann. Phys. (Paris), 30:4–5 (2005), 1–187 | DOI

[14] H. Reinholz, G. Röpke, “Dielectric function beyond the random-phase approximation: kinetic theory versus linear response theory”, Phys. Rev. E, 85:3 (2012), 036401 | DOI

[15] K. Gokke, G. Repke, “Osnovnoe kineticheskoe uravnenie dlya privedennogo statisticheskogo operatora atoma v plazme”, TMF, 154:1 (2008), 31–62 | DOI | DOI | MR | Zbl

[16] C. Lin, C. Gocke, G. Röpke, H. Reinholz, “Transition rates for a Rydberg atom surrounded by a plasma”, Phys. Rev. A, 93:4 (2016), 042711, 17 pp. | DOI

[17] V. Christoph, G. Röpke, “Theory of inverse linear response coefficients”, Phys. Stat. Sol. (B), 131:1 (1985), 11–42 | DOI

[18] H. Reinholz, R. Redmer, G. Röpke, A. Wierling, “Long-wavelength limit of the dynamical local-field factor and dynamical conductivity of a two-component plasma”, Phys. Rev. E, 62:4 (2000), 5648–5666 | DOI

[19] G. Röpke, “Dielectric function and electrical dc conductivity of nonideal plasmas”, Phys. Rev. E, 57:4 (1998), 4673–4683 | DOI

[20] R. Kubo, “Statistical-mechanical theory of irreversible processes. I. General theory and simple applications to magnetic and conduction problems”, J. Phys. Soc. Japan, 12:6 (1957), 570–586 ; “The fluctuation-dissipation theorem”, Rep. Prog. Phys., 29:1 (1966), 255–284 | DOI | MR | DOI | Zbl

[21] G. Röpke, Nonequilibrium Statistical Physics, Wiley, Weinheim, 2013 | MR

[22] G. Repke, “Elektroprovodnost sistemy lokalizovannykh i delokalizovannykh elektronov”, TMF, 46:2 (1981), 279–288 | DOI

[23] J. R. Adams, N. S. Shilkin, V. E. Fortov, V. K. Gryaznov, V. B. Mintsev, R. Redmer, H. Reinholz, G. Röpke, “Coulomb contribution to the direct current electrical conductivity of dense partially ionized plasmas”, Phys. Plasmas, 14:6 (2007), 062303 | DOI

[24] V. D. Morozov, G. Röpke, “The ‘mixed’ Green's function approach to quantum kinetics with initial correlations”, Ann. Phys. (N. Y.), 278:2 (1999), 127–177 | DOI | MR | Zbl

[25] D. N. Zubarev, V. G. Morozov, I. P. Omelyan, M. V. Tokarchuk, “Ob'edinenie kineticheskogo i gidrodinamicheskogo podkhodov v teorii plotnykh gazov i zhidkostei”, TMF, 96:3 (1993), 325–350 | DOI | Zbl

[26] V. G. Morozov, G. Röpke, “Non-Markovian quantum kinetics and conservation laws”, J. Statist. Phys., 102:1–2 (2001), 285–313 | DOI

[27] G. Röpke, R. Redmer, “Electrical conductivity of nondegenerate, fully ionized plasmas”, Phys. Rev. A, 39:2 (1989), 907–910 | DOI

[28] J. L. Spitzer, R. Härm, “Transport phenomena in a completely ionized gas”, Phys. Rev., 89:5 (1953), 977–981 | DOI | Zbl

[29] L. P. Kadanoff, G. Baym, Quantum Statistical Mechanics. Green's function methods in equilibrium and nonequilibrium, W. A. Benjamin, New York, 1962 | MR | Zbl

[30] G. Röpke, R. Der, “The influence of two-particle states (excitons) on the dielectric function of the electron–hole plasma”, Phys. Stat. Sol. (B), 92:2 (1979), 501–510 | DOI

[31] H. Reinholz, G. Röpke, S. Rosmej, R. Redmer, “Conductivity of warm dense matter including electron–electron collisions”, Phys. Rev. E, 91:4 (2015), 043105, 17 pp. | DOI

[32] V. P. Kalashnikov, “Lineinye relaksatsionnye uravneniya v metode neravnovesnogo statisticheskogo operatora”, TMF, 34:3 (1978), 412–425 | DOI

[33] H. Mori, “A continued-fraction representation of the time-correlation functions”, Progr. Theor. Phys., 34:3 (1965), 399–416 | DOI | MR

[34] A. A. Vladimirov, D. Ihle, N. M. Plakida, “Optical and dc conductivities of cuprates: spin fluctuation scattering in the $t$–$J$ model”, Phys. Rev. B, 85:22 (2012), 224536, 12 pp. | DOI

[35] G. Röpke, A. Selchow, A. Wierling, H. Reinholz, “Lindhard dielectric function in the relaxation-time approximation and generalized linear response theory”, Phys. Lett. A, 260:5 (1999), 365–369 | DOI

[36] R. Der, G. Röpke, “Influence of infinitesimal source terms in the Liouville equation (Zubarev's method) on macroscopic evolution equations”, Phys. Lett. A, 95:7 (1983), 347–349 | DOI

[37] M. Gell-Mann, M. L. Goldberger, “The formal theory of scattering”, Phys. Rev., 91:2 (1953), 398–408 | DOI | MR