@article{TMF_2018_194_1_a4,
author = {G. R\"opke},
title = {Electrical conductivity of charged particle systems and {Zubarev's} nonequilibrium statistical operator method},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {90--126},
year = {2018},
volume = {194},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2018_194_1_a4/}
}
TY - JOUR AU - G. Röpke TI - Electrical conductivity of charged particle systems and Zubarev's nonequilibrium statistical operator method JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2018 SP - 90 EP - 126 VL - 194 IS - 1 UR - http://geodesic.mathdoc.fr/item/TMF_2018_194_1_a4/ LA - ru ID - TMF_2018_194_1_a4 ER -
G. Röpke. Electrical conductivity of charged particle systems and Zubarev's nonequilibrium statistical operator method. Teoretičeskaâ i matematičeskaâ fizika, Tome 194 (2018) no. 1, pp. 90-126. http://geodesic.mathdoc.fr/item/TMF_2018_194_1_a4/
[1] L. Boltsman, Lektsii po teorii gazov, Ripol Klassik, M., 2013 | Zbl
[2] N. N. Bogolyubov, Problemy dinamicheskoi teorii v statisticheskoi fizike, Gostekhteorizdat, M., L., 1946 | MR
[3] D. N. Zubarev, Neravnovesnaya statisticheskaya termodinamika, Nauka, M., 1971 ; “Статистический оператор для неравновесных систем”, Докл. АН СССР, 140:1 (1961), 92–95 | MR | MR | Zbl
[4] D. Zubarev, V. Morozov, G. Röpke, Statistical Mechanics of Nonequilibrium Processes, v. 1, Basic Concepts, Kinetic Theory, Akademie-Verlag, Berlin, 1996 | MR
[5] D. Zubarev, V. Morozov, G. Röpke, Statistical Mechanics of Nonequilibrium Processes, v. 2, Relaxation and Hydrodynamic Processes, Akademie-Verlag, Berlin, 1997 | MR
[6] D. N. Zubarev, “Dvukhvremennye funktsii Grina v statisticheskoi fizike”, UFN, 71:1 (1960), 71–116 | DOI
[7] R. Lutstsi, A. R. Vaskonchellos, Kh. G. Ramos, K. G. Rodrigez, “Statisticheskaya termodinamika neobratimykh protsessov v ramkakh metoda neravnovesnogo statisticheskogo operatora Zubareva”, TMF, 194:1 (2018), 7–36
[8] A. L. Kuzemskii, “Metod neravnovesnogo statisticheskogo operatora i obobschennye kineticheskie uravneniya”, TMF, 194:1 (2018), 39–70
[9] V. V. Ryazanov, “Lifetime distributions in the methods of non-equilibrium statistical operator and superstatistics”, Eur. Phys. J. B, 72:4 (2009), 629–639 | DOI
[10] G. Röpke, “Quantum-statistical approach to the electrical conductivity of dense, high-temperature plasmas”, Phys. Rev. A, 38:6 (1988), 3001–3016 | DOI
[11] G. Repke, Neravnovesnaya statisticheskaya mekhanika, Mir, M., 1990 | MR
[12] R. Redmer, “Physical properties of dense, low-temperature plasmas”, Phys. Rep., 282:2–3 (1997), 35–157 | DOI
[13] H. Reinholz, “Dielectric and optical properties of dense plasmas”, Ann. Phys. (Paris), 30:4–5 (2005), 1–187 | DOI
[14] H. Reinholz, G. Röpke, “Dielectric function beyond the random-phase approximation: kinetic theory versus linear response theory”, Phys. Rev. E, 85:3 (2012), 036401 | DOI
[15] K. Gokke, G. Repke, “Osnovnoe kineticheskoe uravnenie dlya privedennogo statisticheskogo operatora atoma v plazme”, TMF, 154:1 (2008), 31–62 | DOI | DOI | MR | Zbl
[16] C. Lin, C. Gocke, G. Röpke, H. Reinholz, “Transition rates for a Rydberg atom surrounded by a plasma”, Phys. Rev. A, 93:4 (2016), 042711, 17 pp. | DOI
[17] V. Christoph, G. Röpke, “Theory of inverse linear response coefficients”, Phys. Stat. Sol. (B), 131:1 (1985), 11–42 | DOI
[18] H. Reinholz, R. Redmer, G. Röpke, A. Wierling, “Long-wavelength limit of the dynamical local-field factor and dynamical conductivity of a two-component plasma”, Phys. Rev. E, 62:4 (2000), 5648–5666 | DOI
[19] G. Röpke, “Dielectric function and electrical dc conductivity of nonideal plasmas”, Phys. Rev. E, 57:4 (1998), 4673–4683 | DOI
[20] R. Kubo, “Statistical-mechanical theory of irreversible processes. I. General theory and simple applications to magnetic and conduction problems”, J. Phys. Soc. Japan, 12:6 (1957), 570–586 ; “The fluctuation-dissipation theorem”, Rep. Prog. Phys., 29:1 (1966), 255–284 | DOI | MR | DOI | Zbl
[21] G. Röpke, Nonequilibrium Statistical Physics, Wiley, Weinheim, 2013 | MR
[22] G. Repke, “Elektroprovodnost sistemy lokalizovannykh i delokalizovannykh elektronov”, TMF, 46:2 (1981), 279–288 | DOI
[23] J. R. Adams, N. S. Shilkin, V. E. Fortov, V. K. Gryaznov, V. B. Mintsev, R. Redmer, H. Reinholz, G. Röpke, “Coulomb contribution to the direct current electrical conductivity of dense partially ionized plasmas”, Phys. Plasmas, 14:6 (2007), 062303 | DOI
[24] V. D. Morozov, G. Röpke, “The ‘mixed’ Green's function approach to quantum kinetics with initial correlations”, Ann. Phys. (N. Y.), 278:2 (1999), 127–177 | DOI | MR | Zbl
[25] D. N. Zubarev, V. G. Morozov, I. P. Omelyan, M. V. Tokarchuk, “Ob'edinenie kineticheskogo i gidrodinamicheskogo podkhodov v teorii plotnykh gazov i zhidkostei”, TMF, 96:3 (1993), 325–350 | DOI | Zbl
[26] V. G. Morozov, G. Röpke, “Non-Markovian quantum kinetics and conservation laws”, J. Statist. Phys., 102:1–2 (2001), 285–313 | DOI
[27] G. Röpke, R. Redmer, “Electrical conductivity of nondegenerate, fully ionized plasmas”, Phys. Rev. A, 39:2 (1989), 907–910 | DOI
[28] J. L. Spitzer, R. Härm, “Transport phenomena in a completely ionized gas”, Phys. Rev., 89:5 (1953), 977–981 | DOI | Zbl
[29] L. P. Kadanoff, G. Baym, Quantum Statistical Mechanics. Green's function methods in equilibrium and nonequilibrium, W. A. Benjamin, New York, 1962 | MR | Zbl
[30] G. Röpke, R. Der, “The influence of two-particle states (excitons) on the dielectric function of the electron–hole plasma”, Phys. Stat. Sol. (B), 92:2 (1979), 501–510 | DOI
[31] H. Reinholz, G. Röpke, S. Rosmej, R. Redmer, “Conductivity of warm dense matter including electron–electron collisions”, Phys. Rev. E, 91:4 (2015), 043105, 17 pp. | DOI
[32] V. P. Kalashnikov, “Lineinye relaksatsionnye uravneniya v metode neravnovesnogo statisticheskogo operatora”, TMF, 34:3 (1978), 412–425 | DOI
[33] H. Mori, “A continued-fraction representation of the time-correlation functions”, Progr. Theor. Phys., 34:3 (1965), 399–416 | DOI | MR
[34] A. A. Vladimirov, D. Ihle, N. M. Plakida, “Optical and dc conductivities of cuprates: spin fluctuation scattering in the $t$–$J$ model”, Phys. Rev. B, 85:22 (2012), 224536, 12 pp. | DOI
[35] G. Röpke, A. Selchow, A. Wierling, H. Reinholz, “Lindhard dielectric function in the relaxation-time approximation and generalized linear response theory”, Phys. Lett. A, 260:5 (1999), 365–369 | DOI
[36] R. Der, G. Röpke, “Influence of infinitesimal source terms in the Liouville equation (Zubarev's method) on macroscopic evolution equations”, Phys. Lett. A, 95:7 (1983), 347–349 | DOI
[37] M. Gell-Mann, M. L. Goldberger, “The formal theory of scattering”, Phys. Rev., 91:2 (1953), 398–408 | DOI | MR