@article{TMF_2018_194_1_a2,
author = {A. L. Kuzemsky},
title = {Nonequilibrium statistical operator method and generalized kinetic equations},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {39--70},
year = {2018},
volume = {194},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2018_194_1_a2/}
}
A. L. Kuzemsky. Nonequilibrium statistical operator method and generalized kinetic equations. Teoretičeskaâ i matematičeskaâ fizika, Tome 194 (2018) no. 1, pp. 39-70. http://geodesic.mathdoc.fr/item/TMF_2018_194_1_a2/
[1] N. N. Bogolyubov, Problemy dinamicheskoi teorii v statisticheskoi fizike, Gostekhteorizdat, M., L., 1946 | MR
[2] N. N. Bogoliubov, “Problems of dynamical theory in statistical physics”, Studies in Statistical Mechanics, v. I, eds. J. de Boer, G. E. Uhlenbeck, North-Holland, Amsterdam, 1962, 1–118 | MR | Zbl
[3] N. N. Bogolyubov, “O stokhasticheskikh protsessakh v dinamicheskikh sistemakh”, EChAYa, 9:4 (1978), 501–579
[4] D. Ya. Petrina, Stochastic Dynamics and Boltzmann Hierarchy, De Gruyter Expositions in Mathematics, 48, Walter de Gruyter, Berlin, 2009 | MR
[5] D. N. Zubarev, Neravnovesnaya statisticheskaya termodinamika, Nauka, M., 1971 | MR
[6] J. A. McLennan, Introduction to Nonequilibrium Statistical Mechanics, Prentice Hall, New York, 1989
[7] B. C. Eu, Nonequilibrium Statistical Mechanics. Ensemble Method, Fundamental Theories of Physics, 93, Kluwer, Dordrecht, 1998 | MR
[8] R. Zwanzig, “Time-correlation functions and transport coefficients in statistical mechanics”, Ann. Rev. Phys. Chem., 16 (1965), 67–102 | DOI
[9] R. Zwanzig, “The concept of irreversibility in statistical mechanics”, Pure and Appl. Chem., 22:3–4 (1970), 371–378 | DOI
[10] R. Zwanzig, Nonequilibrium Statistical Mechanics, Oxford Univ. Press, Oxford, New York, 2001 | MR
[11] G. Gallavotti, Nonequilibrium and Irreversibility, Springer, Cham, 2014 | DOI | MR
[12] V. V. Kozlov, Ansambli Gibbsa i neravnovesnaya statisticheskaya mekhanika, RKhD, M., 2008
[13] V. Vedenyapin, A. Sinitsyn, E. Dulov, Kinetic Boltzmann, Vlasov and Related Equations, Elsevier, Amsterdam, 2011 | DOI | MR
[14] D. N. Zubarev, V. G. Morozov, G. Repke, Statisticheskaya mekhanika neravnovesnykh protsessov, Fizmatlit, M., 2002 | MR
[15] A. L. Kuzemsky, Statistical Mechanics and the Physics of Many-Particle Model Systems, World Sci., Singapore, 2017 | DOI
[16] A. L. Kuzemsky, “Theory of transport processes and the method of the nonequilibrium statistical operator”, Internat. J. Modern Phys. B, 21:17 (2007), 2821–2949 | DOI | Zbl
[17] A. L. Kuzemsky, “Generalized kinetic and evolution equations in the approach of the nonequilibrium statistical operator”, Internat. J. Modern Phys. B, 19:6 (2005), 1029–1059 | DOI | MR | Zbl
[18] A. L. Kuzemsky, “Electronic transport in metallic systems and generalized kinetic equations”, Internat. J. Modern Phys. B, 25:23n24 (2011), 3071–3183 | DOI
[19] M. Toda, R. Kubo, N. Saitô, Statistical Physics I. Equilibrium Statistical Mechanics, Springer, Berlin, 1992 | DOI | MR
[20] M. Toda, R. Kubo, N. Saitô, Statistical Physics II. Nonequilibrium Statistical Mechanics, Springer, Berlin, 1991 | DOI | MR
[21] J. W. Gibbs, Elementary Principles in Statistical Mechanics: Developed with Especial Reference to the Rational Foundations of Thermodynamics, Dover, New York, 1960 | MR
[22] N. N. Bogolyubov, D. Ya. Petrina, B. I. Khatset, “Matematicheskoe opisanie ravnovesnogo sostoyaniya klassicheskikh sistem na osnove formalizma kanonicheskogo ansamblya”, TMF, 1:2 (1969), 251–274 | DOI | MR
[23] A. L. Kuzemsky, “Thermodynamic limit in statistical physics”, Internat. J. Modern Phys. B, 28:9 (2014), 1430004, 28 pp. | DOI | MR | Zbl
[24] R. A. Minlos, Vvedenie v matematicheskuyu statisticheskuyu fiziku, MTsNMO, M., 2002 | MR | Zbl
[25] R. Zwanzig, “Ensemble method in the theory of irreversibility”, J. Chem. Phys., 33:5 (1960), 1338–1341 | DOI | MR
[26] P. G. Bergmann, J. L. Lebowitz, “New approach to nonequilibrium processes”, Phys. Rev., 99:2 (1955), 578–587 | DOI | MR | Zbl
[27] J. L. Lebowitz, P. G. Bergmann, “Irreversible Gibbsian ensembles”, Ann. Phys. (N. Y.), 1:1 (1957), 1–23 | DOI | MR | Zbl
[28] J. L. Lebowitz, “Stationary nonequilibrium Gibbsian ensembles”, Phys. Rev., 114:5 (1959), 1192–1202 | DOI | MR | Zbl
[29] J. L. Lebowitz, A. Shimony, “Statistical mechanics of open systems”, Phys. Rev., 128:4 (1962), 1945–1958 | DOI | MR | Zbl
[30] N. N. Bogolyubov, Yu. A. Mitropolskii, Asimptoticheskie metody v teorii nelineinykh kolebanii, Nauka, M., 1974 | MR | MR | Zbl
[31] Yu. A. Mitropolskii, Metod usredneniya v nelineinoi mekhanike, Naukova dumka, Kiev, 1971 | MR
[32] A. M. Samoilenko, “N. N. Bogolyubov i nelineinaya mekhanika”, UMN, 49:5(299) (1994), 103–146 | DOI | MR | Zbl
[33] V. I. Arnold, “Ot usredneniya do statfiziki”, Problemy sovremennoi matematicheskoi fiziki, Sbornik statei. K 90-letiyu so dnya rozhdeniya akademika Nikolaya Nikolaevicha Bogolyubova, Tr. MIAN, 228, Nauka, M., 2000, 196–202
[34] N. N. Bogolyubov, “O nekotorykh problemakh, svyazannykh s obosnovaniem statisticheskoi mekhaniki”, Istoriya i metodologiya estestvennykh nauk. Fizika., 30, Izd-vo Mosk. un-ta, M., 1983, 3–8
[35] N. N. Bogolyubov, D. N. Zubarev, “Metod asimptoticheskogo priblizheniya dlya sistem s vraschayuscheisya fazoi i ego primenenie k dvizheniyu zaryazhennykh chastits”, Ukr. matem. zhurn., 7:1 (1955), 5–17 | MR | Zbl
[36] V. V. Kozlov, O. G. Smolyanov, “Informatsionnaya entropiya v zadachakh klassicheskoi i kvantovoi statisticheskoi mekhaniki”, Dokl. RAN, 411:5 (2006), 587–590 | DOI | Zbl
[37] E. T. Jaynes, Probability Theory: The Logic of Science, Cambridge Univ. Press, New York, 2003 | DOI | MR
[38] L. M. Martyushev, V. D. Seleznev, “Maximum entropy production principle in physics, chemistry and biology”, Phys. Rep., 426:1 (2006), 1–45 | DOI | MR
[39] A. L. Kuzemsky, “Probability, information and statistical physics”, Internat. J. Theor. Phys., 55:3 (2016), 1378–1404 | DOI | MR | Zbl
[40] N. N. Bogolyubov, “Kvazisrednie v zadachakh statisticheskoi mekhaniki”, Statisticheskaya fizika i kvantovaya teoriya polya, ed. N. N. Bogolyubov, Nauka, M., 1973, 7–80 | MR
[41] D. N. Zubarev, “Granichnye usloviya dlya statisticheskikh operatorov v teorii neravnovesnykh protsessov i kvazisrednie”, TMF, 3:2 (1970), 276–286 | DOI
[42] A. L. Kuzemsky, “Bogoliubov's vision: quasiaverages and broken symmetry to quantum protectorate and emergence”, Internat. J. Modern Phys. B, 24:8 (2010), 835–935 | DOI | MR | Zbl
[43] D. N. Zubarev, V. P. Kalashnikov, “Ekstremalnye svoistva neravnovesnogo statisticheskogo operatora”, TMF, 1:1 (1969), 137–149 | DOI
[44] D. N. Zubarev, V. P. Kalashnikov, “Postroenie statisticheskikh operatorov dlya neravnovesnykh protsessov”, TMF, 3:1 (1970), 126–134 | DOI | MR
[45] D. N. Zubarev, V. P. Kalashnikov, “Derivation of the nonequilibrium statistical operator from the extremum of the information entropy”, Physica, 46:4 (1970), 550–554 | DOI | MR | Zbl
[46] L. A. Pokrovskii, “Poluchenie obobschennykh kineticheskikh uravnenii s pomoschyu neravnovesnogo statisticheskogo operatora”, Dokl. AN SSSR, 183:4 (1968), 806–809
[47] K. Valyasek, A. L. Kuzemskii, “Kineticheskie uravneniya dlya sistemy v termostate”, TMF, 4:2 (1970), 267–276 | DOI
[48] V. V. Kozlov, “Gibbs ensembles, equidistribution of the energy of sympathetic oscillators and statistical models of thermostat”, Regul. Chaotic Dyn., 13:3 (2008), 141–154 | DOI | MR | Zbl
[49] A. L. Kuzemsky, “Statistical theory of spin relaxation and diffusion in solids”, J. Low Temp. Phys., 143:5–6 (2006), 213–256 | DOI
[50] K. Valyasek, D. N. Zubarev, A. L. Kuzemskii, “Uravnenie tipa Shredingera s zatukhaniem dlya dinamicheskoi sistemy v termostate”, TMF, 5:2 (1970), 281–292 | DOI
[51] A. L. Kuzemskii, “Raboty D. I. Blokhintseva i razvitie kvantovoi fiziki”, EChAYa, 39:1 (2008), 5–81 | DOI
[52] D. I. Blokhintsev, Izbrannye trudy, v. 1, Fizmatlit, M., 2009
[53] N. N. Bogolyubov, N. N. Bogolyubov (ml.), Aspekty teorii polyarona, Fizmatlit, M., 2004
[54] A. L. Kuzemsky, A. Pawlikowski, “Note on the diagonalization of a quadratic linear form defined on the set of second quantization fermion operators”, Rep. Math. Phys., 3:3 (1972), 201–207 | DOI
[55] A. L. Kuzemsky, K. Walasek, “On the calculation of the natural width of spectral lines of atom by the methods of nonequilibrium statistical mechanics”, Lett. Nuovo Cimento, 2 (1971), 953–956 | DOI
[56] S. Bloom, H. Margenau, “Quantum theory of spectral line broadening”, Phys. Rev., 90:5 (1953), 791–794 | DOI | Zbl
[57] D. I. Blokhintsev, “Vychislenie estestvennoi shiriny spektralnykh linii statsionarnym metodom”, ZhETF, 16:11 (1946), 965–967
[58] A. L. Kuzemsky, “Generalized Van Hove formula for scattering of neutrons by the nonequilibrium statistical medium”, Internat. J. Modern Phys. B, 26:13 (2012), 1250092, 34 pp. | DOI | Zbl
[59] W. Marshall, S. W. Lovesey, Theory of Thermal Neutron Scattering, Oxford Univ. Press, Oxford, 1971