Nonequilibrium statistical operator method and generalized kinetic equations
Teoretičeskaâ i matematičeskaâ fizika, Tome 194 (2018) no. 1, pp. 39-70 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider some principal problems of nonequilibrium statistical thermodynamics in the framework of the Zubarev nonequilibrium statistical operator approach. We present a brief comparative analysis of some approaches to describing irreversible processes based on the concept of nonequilibrium Gibbs ensembles and their applicability to describing nonequilibrium processes. We discuss the derivation of generalized kinetic equations for a system in a heat bath. We obtain and analyze a damped Schrödinger-type equation for a dynamical system in a heat bath. We study the dynamical behavior of a particle in a medium taking the dissipation effects into account. We consider the scattering problem for neutrons in a nonequilibrium medium and derive a generalized Van Hove formula. We show that the nonequilibrium statistical operator method is an effective, convenient tool for describing irreversible processes in condensed matter.
Keywords: nonequilibrium statistical physics, irreversible process, nonequilibrium statistical operator method, open system, generalized kinetic equation, damped Schrödinger-type equation, neutron scattering, generalized Van Hove formula.
@article{TMF_2018_194_1_a2,
     author = {A. L. Kuzemsky},
     title = {Nonequilibrium statistical operator method and generalized kinetic equations},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {39--70},
     year = {2018},
     volume = {194},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2018_194_1_a2/}
}
TY  - JOUR
AU  - A. L. Kuzemsky
TI  - Nonequilibrium statistical operator method and generalized kinetic equations
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2018
SP  - 39
EP  - 70
VL  - 194
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2018_194_1_a2/
LA  - ru
ID  - TMF_2018_194_1_a2
ER  - 
%0 Journal Article
%A A. L. Kuzemsky
%T Nonequilibrium statistical operator method and generalized kinetic equations
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2018
%P 39-70
%V 194
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2018_194_1_a2/
%G ru
%F TMF_2018_194_1_a2
A. L. Kuzemsky. Nonequilibrium statistical operator method and generalized kinetic equations. Teoretičeskaâ i matematičeskaâ fizika, Tome 194 (2018) no. 1, pp. 39-70. http://geodesic.mathdoc.fr/item/TMF_2018_194_1_a2/

[1] N. N. Bogolyubov, Problemy dinamicheskoi teorii v statisticheskoi fizike, Gostekhteorizdat, M., L., 1946 | MR

[2] N. N. Bogoliubov, “Problems of dynamical theory in statistical physics”, Studies in Statistical Mechanics, v. I, eds. J. de Boer, G. E. Uhlenbeck, North-Holland, Amsterdam, 1962, 1–118 | MR | Zbl

[3] N. N. Bogolyubov, “O stokhasticheskikh protsessakh v dinamicheskikh sistemakh”, EChAYa, 9:4 (1978), 501–579

[4] D. Ya. Petrina, Stochastic Dynamics and Boltzmann Hierarchy, De Gruyter Expositions in Mathematics, 48, Walter de Gruyter, Berlin, 2009 | MR

[5] D. N. Zubarev, Neravnovesnaya statisticheskaya termodinamika, Nauka, M., 1971 | MR

[6] J. A. McLennan, Introduction to Nonequilibrium Statistical Mechanics, Prentice Hall, New York, 1989

[7] B. C. Eu, Nonequilibrium Statistical Mechanics. Ensemble Method, Fundamental Theories of Physics, 93, Kluwer, Dordrecht, 1998 | MR

[8] R. Zwanzig, “Time-correlation functions and transport coefficients in statistical mechanics”, Ann. Rev. Phys. Chem., 16 (1965), 67–102 | DOI

[9] R. Zwanzig, “The concept of irreversibility in statistical mechanics”, Pure and Appl. Chem., 22:3–4 (1970), 371–378 | DOI

[10] R. Zwanzig, Nonequilibrium Statistical Mechanics, Oxford Univ. Press, Oxford, New York, 2001 | MR

[11] G. Gallavotti, Nonequilibrium and Irreversibility, Springer, Cham, 2014 | DOI | MR

[12] V. V. Kozlov, Ansambli Gibbsa i neravnovesnaya statisticheskaya mekhanika, RKhD, M., 2008

[13] V. Vedenyapin, A. Sinitsyn, E. Dulov, Kinetic Boltzmann, Vlasov and Related Equations, Elsevier, Amsterdam, 2011 | DOI | MR

[14] D. N. Zubarev, V. G. Morozov, G. Repke, Statisticheskaya mekhanika neravnovesnykh protsessov, Fizmatlit, M., 2002 | MR

[15] A. L. Kuzemsky, Statistical Mechanics and the Physics of Many-Particle Model Systems, World Sci., Singapore, 2017 | DOI

[16] A. L. Kuzemsky, “Theory of transport processes and the method of the nonequilibrium statistical operator”, Internat. J. Modern Phys. B, 21:17 (2007), 2821–2949 | DOI | Zbl

[17] A. L. Kuzemsky, “Generalized kinetic and evolution equations in the approach of the nonequilibrium statistical operator”, Internat. J. Modern Phys. B, 19:6 (2005), 1029–1059 | DOI | MR | Zbl

[18] A. L. Kuzemsky, “Electronic transport in metallic systems and generalized kinetic equations”, Internat. J. Modern Phys. B, 25:23n24 (2011), 3071–3183 | DOI

[19] M. Toda, R. Kubo, N. Saitô, Statistical Physics I. Equilibrium Statistical Mechanics, Springer, Berlin, 1992 | DOI | MR

[20] M. Toda, R. Kubo, N. Saitô, Statistical Physics II. Nonequilibrium Statistical Mechanics, Springer, Berlin, 1991 | DOI | MR

[21] J. W. Gibbs, Elementary Principles in Statistical Mechanics: Developed with Especial Reference to the Rational Foundations of Thermodynamics, Dover, New York, 1960 | MR

[22] N. N. Bogolyubov, D. Ya. Petrina, B. I. Khatset, “Matematicheskoe opisanie ravnovesnogo sostoyaniya klassicheskikh sistem na osnove formalizma kanonicheskogo ansamblya”, TMF, 1:2 (1969), 251–274 | DOI | MR

[23] A. L. Kuzemsky, “Thermodynamic limit in statistical physics”, Internat. J. Modern Phys. B, 28:9 (2014), 1430004, 28 pp. | DOI | MR | Zbl

[24] R. A. Minlos, Vvedenie v matematicheskuyu statisticheskuyu fiziku, MTsNMO, M., 2002 | MR | Zbl

[25] R. Zwanzig, “Ensemble method in the theory of irreversibility”, J. Chem. Phys., 33:5 (1960), 1338–1341 | DOI | MR

[26] P. G. Bergmann, J. L. Lebowitz, “New approach to nonequilibrium processes”, Phys. Rev., 99:2 (1955), 578–587 | DOI | MR | Zbl

[27] J. L. Lebowitz, P. G. Bergmann, “Irreversible Gibbsian ensembles”, Ann. Phys. (N. Y.), 1:1 (1957), 1–23 | DOI | MR | Zbl

[28] J. L. Lebowitz, “Stationary nonequilibrium Gibbsian ensembles”, Phys. Rev., 114:5 (1959), 1192–1202 | DOI | MR | Zbl

[29] J. L. Lebowitz, A. Shimony, “Statistical mechanics of open systems”, Phys. Rev., 128:4 (1962), 1945–1958 | DOI | MR | Zbl

[30] N. N. Bogolyubov, Yu. A. Mitropolskii, Asimptoticheskie metody v teorii nelineinykh kolebanii, Nauka, M., 1974 | MR | MR | Zbl

[31] Yu. A. Mitropolskii, Metod usredneniya v nelineinoi mekhanike, Naukova dumka, Kiev, 1971 | MR

[32] A. M. Samoilenko, “N. N. Bogolyubov i nelineinaya mekhanika”, UMN, 49:5(299) (1994), 103–146 | DOI | MR | Zbl

[33] V. I. Arnold, “Ot usredneniya do statfiziki”, Problemy sovremennoi matematicheskoi fiziki, Sbornik statei. K 90-letiyu so dnya rozhdeniya akademika Nikolaya Nikolaevicha Bogolyubova, Tr. MIAN, 228, Nauka, M., 2000, 196–202

[34] N. N. Bogolyubov, “O nekotorykh problemakh, svyazannykh s obosnovaniem statisticheskoi mekhaniki”, Istoriya i metodologiya estestvennykh nauk. Fizika., 30, Izd-vo Mosk. un-ta, M., 1983, 3–8

[35] N. N. Bogolyubov, D. N. Zubarev, “Metod asimptoticheskogo priblizheniya dlya sistem s vraschayuscheisya fazoi i ego primenenie k dvizheniyu zaryazhennykh chastits”, Ukr. matem. zhurn., 7:1 (1955), 5–17 | MR | Zbl

[36] V. V. Kozlov, O. G. Smolyanov, “Informatsionnaya entropiya v zadachakh klassicheskoi i kvantovoi statisticheskoi mekhaniki”, Dokl. RAN, 411:5 (2006), 587–590 | DOI | Zbl

[37] E. T. Jaynes, Probability Theory: The Logic of Science, Cambridge Univ. Press, New York, 2003 | DOI | MR

[38] L. M. Martyushev, V. D. Seleznev, “Maximum entropy production principle in physics, chemistry and biology”, Phys. Rep., 426:1 (2006), 1–45 | DOI | MR

[39] A. L. Kuzemsky, “Probability, information and statistical physics”, Internat. J. Theor. Phys., 55:3 (2016), 1378–1404 | DOI | MR | Zbl

[40] N. N. Bogolyubov, “Kvazisrednie v zadachakh statisticheskoi mekhaniki”, Statisticheskaya fizika i kvantovaya teoriya polya, ed. N. N. Bogolyubov, Nauka, M., 1973, 7–80 | MR

[41] D. N. Zubarev, “Granichnye usloviya dlya statisticheskikh operatorov v teorii neravnovesnykh protsessov i kvazisrednie”, TMF, 3:2 (1970), 276–286 | DOI

[42] A. L. Kuzemsky, “Bogoliubov's vision: quasiaverages and broken symmetry to quantum protectorate and emergence”, Internat. J. Modern Phys. B, 24:8 (2010), 835–935 | DOI | MR | Zbl

[43] D. N. Zubarev, V. P. Kalashnikov, “Ekstremalnye svoistva neravnovesnogo statisticheskogo operatora”, TMF, 1:1 (1969), 137–149 | DOI

[44] D. N. Zubarev, V. P. Kalashnikov, “Postroenie statisticheskikh operatorov dlya neravnovesnykh protsessov”, TMF, 3:1 (1970), 126–134 | DOI | MR

[45] D. N. Zubarev, V. P. Kalashnikov, “Derivation of the nonequilibrium statistical operator from the extremum of the information entropy”, Physica, 46:4 (1970), 550–554 | DOI | MR | Zbl

[46] L. A. Pokrovskii, “Poluchenie obobschennykh kineticheskikh uravnenii s pomoschyu neravnovesnogo statisticheskogo operatora”, Dokl. AN SSSR, 183:4 (1968), 806–809

[47] K. Valyasek, A. L. Kuzemskii, “Kineticheskie uravneniya dlya sistemy v termostate”, TMF, 4:2 (1970), 267–276 | DOI

[48] V. V. Kozlov, “Gibbs ensembles, equidistribution of the energy of sympathetic oscillators and statistical models of thermostat”, Regul. Chaotic Dyn., 13:3 (2008), 141–154 | DOI | MR | Zbl

[49] A. L. Kuzemsky, “Statistical theory of spin relaxation and diffusion in solids”, J. Low Temp. Phys., 143:5–6 (2006), 213–256 | DOI

[50] K. Valyasek, D. N. Zubarev, A. L. Kuzemskii, “Uravnenie tipa Shredingera s zatukhaniem dlya dinamicheskoi sistemy v termostate”, TMF, 5:2 (1970), 281–292 | DOI

[51] A. L. Kuzemskii, “Raboty D. I. Blokhintseva i razvitie kvantovoi fiziki”, EChAYa, 39:1 (2008), 5–81 | DOI

[52] D. I. Blokhintsev, Izbrannye trudy, v. 1, Fizmatlit, M., 2009

[53] N. N. Bogolyubov, N. N. Bogolyubov (ml.), Aspekty teorii polyarona, Fizmatlit, M., 2004

[54] A. L. Kuzemsky, A. Pawlikowski, “Note on the diagonalization of a quadratic linear form defined on the set of second quantization fermion operators”, Rep. Math. Phys., 3:3 (1972), 201–207 | DOI

[55] A. L. Kuzemsky, K. Walasek, “On the calculation of the natural width of spectral lines of atom by the methods of nonequilibrium statistical mechanics”, Lett. Nuovo Cimento, 2 (1971), 953–956 | DOI

[56] S. Bloom, H. Margenau, “Quantum theory of spectral line broadening”, Phys. Rev., 90:5 (1953), 791–794 | DOI | Zbl

[57] D. I. Blokhintsev, “Vychislenie estestvennoi shiriny spektralnykh linii statsionarnym metodom”, ZhETF, 16:11 (1946), 965–967

[58] A. L. Kuzemsky, “Generalized Van Hove formula for scattering of neutrons by the nonequilibrium statistical medium”, Internat. J. Modern Phys. B, 26:13 (2012), 1250092, 34 pp. | DOI | Zbl

[59] W. Marshall, S. W. Lovesey, Theory of Thermal Neutron Scattering, Oxford Univ. Press, Oxford, 1971