$q$-Deformed Barut--Girardello $su(1,1)$ coherent states and Schr\"odinger cat states
    
    
  
  
  
      
      
      
        
Teoretičeskaâ i matematičeskaâ fizika, Tome 193 (2017) no. 3, pp. 505-514
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			We define Schrödinger cat states as superpositions of $q$-deformed
Barut–Girardello $su(1,1)$ coherent states with an adjustable angle $\varphi$
in a $q$-deformed Fock space. We study the statistical properties of the $q$-deformed Barut–Girardello $su(1,1)$ coherent states and Schrödinger
cat states. The statistical properties of photons are always sub-Poissonian
for $q$-deformed Barut–Girardello $su(1,1)$ coherent states. For
Schrödinger cat states in the cases $\varphi=0,\pi/2,\pi$, the statistical
properties of photons are always sub-Poissonian if $\varphi=\pi/2$, and the other cases are hard to determine because they depend on the parameters $q$
and $k$. Moreover, we find some interesting properties of Schrödinger cat
states in the limit $|z|\to0$, where $z$ is the parameter of those states.
We also derive that the statistical properties of photons are sub-Poissonian
in the undeformed case where $\pi/2\le\varphi\le3\pi/2$.
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Keywords: 
$q$-deformed Barut–Girardello algebra, $su(1,1)$ coherent state, $q$-deformed cat state.
                    
                  
                
                
                @article{TMF_2017_193_3_a9,
     author = {Yuefeng Zhao and Yan Zeng and Honggang Liu and Qi Song and Gangcheng. Wang and Kang Xue},
     title = {$q${-Deformed} {Barut--Girardello} $su(1,1)$ coherent states and {Schr\"odinger} cat states},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {505--514},
     publisher = {mathdoc},
     volume = {193},
     number = {3},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2017_193_3_a9/}
}
                      
                      
                    TY - JOUR AU - Yuefeng Zhao AU - Yan Zeng AU - Honggang Liu AU - Qi Song AU - Gangcheng. Wang AU - Kang Xue TI - $q$-Deformed Barut--Girardello $su(1,1)$ coherent states and Schr\"odinger cat states JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2017 SP - 505 EP - 514 VL - 193 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_2017_193_3_a9/ LA - ru ID - TMF_2017_193_3_a9 ER -
%0 Journal Article %A Yuefeng Zhao %A Yan Zeng %A Honggang Liu %A Qi Song %A Gangcheng. Wang %A Kang Xue %T $q$-Deformed Barut--Girardello $su(1,1)$ coherent states and Schr\"odinger cat states %J Teoretičeskaâ i matematičeskaâ fizika %D 2017 %P 505-514 %V 193 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/TMF_2017_193_3_a9/ %G ru %F TMF_2017_193_3_a9
Yuefeng Zhao; Yan Zeng; Honggang Liu; Qi Song; Gangcheng. Wang; Kang Xue. $q$-Deformed Barut--Girardello $su(1,1)$ coherent states and Schr\"odinger cat states. Teoretičeskaâ i matematičeskaâ fizika, Tome 193 (2017) no. 3, pp. 505-514. http://geodesic.mathdoc.fr/item/TMF_2017_193_3_a9/