$q$-Deformed Barut–Girardello $su(1,1)$ coherent states and Schrödinger cat states
Teoretičeskaâ i matematičeskaâ fizika, Tome 193 (2017) no. 3, pp. 505-514 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We define Schrödinger cat states as superpositions of $q$-deformed Barut–Girardello $su(1,1)$ coherent states with an adjustable angle $\varphi$ in a $q$-deformed Fock space. We study the statistical properties of the $q$-deformed Barut–Girardello $su(1,1)$ coherent states and Schrödinger cat states. The statistical properties of photons are always sub-Poissonian for $q$-deformed Barut–Girardello $su(1,1)$ coherent states. For Schrödinger cat states in the cases $\varphi=0,\pi/2,\pi$, the statistical properties of photons are always sub-Poissonian if $\varphi=\pi/2$, and the other cases are hard to determine because they depend on the parameters $q$ and $k$. Moreover, we find some interesting properties of Schrödinger cat states in the limit $|z|\to0$, where $z$ is the parameter of those states. We also derive that the statistical properties of photons are sub-Poissonian in the undeformed case where $\pi/2\le\varphi\le3\pi/2$.
Keywords: $q$-deformed Barut–Girardello algebra, $su(1,1)$ coherent state, $q$-deformed cat state.
@article{TMF_2017_193_3_a9,
     author = {Yuefeng Zhao and Yan Zeng and Honggang Liu and Qi Song and Gangcheng. Wang and Kang Xue},
     title = {$q${-Deformed} {Barut{\textendash}Girardello} $su(1,1)$ coherent states and {Schr\"odinger} cat states},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {505--514},
     year = {2017},
     volume = {193},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2017_193_3_a9/}
}
TY  - JOUR
AU  - Yuefeng Zhao
AU  - Yan Zeng
AU  - Honggang Liu
AU  - Qi Song
AU  - Gangcheng. Wang
AU  - Kang Xue
TI  - $q$-Deformed Barut–Girardello $su(1,1)$ coherent states and Schrödinger cat states
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2017
SP  - 505
EP  - 514
VL  - 193
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2017_193_3_a9/
LA  - ru
ID  - TMF_2017_193_3_a9
ER  - 
%0 Journal Article
%A Yuefeng Zhao
%A Yan Zeng
%A Honggang Liu
%A Qi Song
%A Gangcheng. Wang
%A Kang Xue
%T $q$-Deformed Barut–Girardello $su(1,1)$ coherent states and Schrödinger cat states
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2017
%P 505-514
%V 193
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2017_193_3_a9/
%G ru
%F TMF_2017_193_3_a9
Yuefeng Zhao; Yan Zeng; Honggang Liu; Qi Song; Gangcheng. Wang; Kang Xue. $q$-Deformed Barut–Girardello $su(1,1)$ coherent states and Schrödinger cat states. Teoretičeskaâ i matematičeskaâ fizika, Tome 193 (2017) no. 3, pp. 505-514. http://geodesic.mathdoc.fr/item/TMF_2017_193_3_a9/

[1] E. Schrödinger, “Der stetige Übergang von der Mikro-zur Makromechanik”, Naturwissenschaften, 14:28 (1926), 664–666 | DOI

[2] R. J. Glauber, “The quantum theory of optical coherence”, Phys. Rev., 130:6 (1963), 2529–2539 | DOI | MR

[3] R. J. Glauber, “Coherent and incoherent states of radiation field”, Phys. Rev., 131:6 (1963), 2766–2788 | DOI | MR

[4] A. M. Perelomov, “Coherent states for arbitrary Lie group”, Commun. Math. Phys., 26:3 (1972), 222–236 | DOI | MR

[5] A. O. Barut, L. Girardello, “New “coherent” states associated with non-compact groups”, Commun. Math. Phys., 21:1 (1971), 41–55 | DOI | MR

[6] M. Arik, D. D. Coon, “Hilbert spaces of analytic functions and generalized coherent states”, J. Math. Phys., 17:4 (1976), 524–527 | DOI | MR

[7] M. Chaichian, P. P. Kulish, “Quantum Lie superalgebras and $q$-oscillators”, Phys. Lett. B, 234:1–2 (1990), 72–80 | DOI | MR

[8] A. J. Macfarlane, “On $q$-analogues of the quantum harmonic oscillator and the quantum group $SU(2)_q$”, J. Phys. A: Math. Gen., 22:21 (1989), 4581–4588 | DOI | MR

[9] L. C. Biedenharn, “The quantum group $SU_q(2)$ and a $q$-analogue of the boson operators”, J. Phys. A: Math. Gen., 22:18 (1989), L873–L878 | DOI

[10] C. P. Sun, H. C. Fu, “The $q$-deformed boson realisation of the quantum group $SU(n)_q$ and its representations”, J. Phys. A: Math. Gen., 22:21 (1989), L983–L986 | DOI | MR

[11] P. P. Kulish, E. V. Damaskinsky, “On the $q$ oscillator and the quantum algebra $su_q(1,1)$”, J. Phys. A: Math. Gen., 23:9 (1990), L415–L419 | DOI | MR

[12] K. Berrada, M. El Baz, Y. Hassoumi, “On the construction of generalized $SU(1,1)$ coherent states”, Rep. Math. Phys., 68:1 (2011) | DOI | MR | Zbl

[13] E. Schrödinger, “Die gegenwärtige Situation in der Quantenmechanik”, Naturwissenschaften, 23:50 (1935), 844–849 | DOI

[14] C. C. Gerry, R. Grobe, “Two-mode $SU(2)$ and $SU(1,1)$ Schrödinger cat states”, J. Modern Optics, 44:1 (1997), 41–53 | DOI | MR

[15] C. C. Gerry, R. Grobe, “Generation and properties of collective atomic Schrödinger-cat states”, Phys. Rev. A, 56:3 (1997), 2390–2396 | DOI

[16] S. Dey, “$q$-Deformed noncommutative cat states and their nonclassical properties”, Phys. Rev. D, 91:4 (2015), 044024, 9 pp. | DOI

[17] A. M. Perelomov, “On the completeness of some subsystems of $q$-deformed coherent states”, Helv. Phys. Acta, 68:6 (1995), 554–576 | MR

[18] J. Katriel, A. I. Solomon, “Generalized $q$-bosons and their squeezed states”, J. Phys. A: Math. Gen., 24:9 (1991), 2093–2105 | DOI | MR

[19] L. Mandel, “Sub-Poissonian photon statistics in resonance fluorescence”, Opt. Lett., 4:7 (1979), 205–207 | DOI

[20] L. Lorch, “Monotonicity of the zeros of a cross product of Bessel functions”, Methods Appl. Anal., 1:1 (1994), 75–80 | DOI | MR

[21] A. Laforgia, P. Natalini, “Some inequalities for modified Bessel functions”, J. Inequal. Appl., 2010 (2010), 253035, 10 pp. | DOI | MR

[22] O. Szász, “Inequalities concerning ultraspherical polynomials and Bessel functions”, Proc. Amer. Math. Soc., 1 (1950), 256–267 | DOI | MR

[23] O. Szász, “Identities and inequalities concerning orthogonal polynomials and Bessel functions”, J. Analyse Math., 1 (1951), 116–134 | DOI | MR