Holographic control of information and dynamical topology change for
Teoretičeskaâ i matematičeskaâ fizika, Tome 193 (2017) no. 3, pp. 493-504 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We analyze how the compositeness of a system affects the characteristic time of equilibration. We study the dynamics of open composite quantum systems strongly coupled to the environment after a quantum perturbation accompanied by nonequilibrium heating. We use a holographic description of the evolution of entanglement entropy. The nonsmooth character of the evolution with holographic entanglement is a general feature of composite systems, which demonstrate a dynamical change of topology in the bulk space and a jumplike velocity change of entanglement entropy propagation. Moreover, the number of jumps depends on the system configuration and especially on the number of composite parts. The evolution of the mutual information of two composite systems inherits these jumps. We present a detailed study of the mutual information for two subsystems with one of them being bipartite. We find five qualitatively different types of behavior of the mutual information dynamics and indicate the corresponding regions of the system parameters.
Keywords: holographic entanglement entropy, mutual information, AdS/CFT, Vaidya.
@article{TMF_2017_193_3_a8,
     author = {I. Ya. Aref'eva and I. V. Volovich and O. V. Inozemcev},
     title = {Holographic control of information and dynamical topology change for},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {493--504},
     year = {2017},
     volume = {193},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2017_193_3_a8/}
}
TY  - JOUR
AU  - I. Ya. Aref'eva
AU  - I. V. Volovich
AU  - O. V. Inozemcev
TI  - Holographic control of information and dynamical topology change for
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2017
SP  - 493
EP  - 504
VL  - 193
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2017_193_3_a8/
LA  - ru
ID  - TMF_2017_193_3_a8
ER  - 
%0 Journal Article
%A I. Ya. Aref'eva
%A I. V. Volovich
%A O. V. Inozemcev
%T Holographic control of information and dynamical topology change for
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2017
%P 493-504
%V 193
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2017_193_3_a8/
%G ru
%F TMF_2017_193_3_a8
I. Ya. Aref'eva; I. V. Volovich; O. V. Inozemcev. Holographic control of information and dynamical topology change for. Teoretičeskaâ i matematičeskaâ fizika, Tome 193 (2017) no. 3, pp. 493-504. http://geodesic.mathdoc.fr/item/TMF_2017_193_3_a8/

[1] M. Ohya, I. Volovich, Mathematical Foundations of Quantum Information and Computation and Its Applications to Nano- and Bio-systems, Springer, Dordrecht, 2011 | MR | Zbl

[2] I. Aref'eva, I. Volovich, Holographic photosynthesis, arXiv: 1603.09107

[3] M. Mohseni, Y. Omar, G. S. Engel, M. B. Plenio (eds.), Quantum Effects in Biology, Cambridge Univ. Press, Cambridge, 2014

[4] O. Aharony, S. S. Gubser, J. M. Maldacena, H. Ooguri, Y. Oz, “Large $N$ field theories, string theory and gravity”, Phys. Rep., 323:3–4 (2000), 183–386, arXiv: hep-th/9905111 | DOI | MR | Zbl

[5] I. Ya. Arefeva, “Golograficheskoe opisanie kvark-glyuonnoi plazmy, obrazuyuscheisya pri stolknoveniyakh tyazhelykh ionov”, UFN, 184:6 (2014), 569–598 | DOI

[6] I. Ya. Arefeva, “Vremya obrazovaniya kvark-glyuonnoi plazmy pri stolknoveniyakh tyazhelykh ionov v golograficheskoi modeli s udarnymi volnami”, TMF, 184:3 (2015), 398–417, arXiv: 1503.02185 | DOI | DOI | MR | Zbl

[7] D. S. Ageev, I. Ya. Arefeva, “Probuzhdenie i skrambling v protsesse golograficheskogo nagreva”, TMF, 193:1 (2017), 146–161

[8] D. S. Ageev, I. Y. Aref'eva, Memory loss in holographic non-equilibrium heating, arXiv: 1704.07747

[9] I. V. Volovich, S. V. Kozyrev, “Manipulyatsiya sostoyaniyami vyrozhdennoi kvantovoi sistemy”, Sovremennye problemy matematiki, mekhaniki i matematicheskoi fiziki. II, Sbornik statei, Tr. MIAN, 294, MAIK, M., 2016, 256–267

[10] I. Ya. Aref'eva, M. A. Khramtsov, “AdS/CFT prescription for angle-deficit space and winding geodesics”, JHEP, 04 (2016), 121, 21 pp. | MR

[11] A. S Trushechkin, I. V. Volovich, “Perturbative treatment of inter-site couplings in the local description of open quantum networks”, EPL, 113:3 (2016), 30005, 6 pp. | DOI

[12] I. V. Volovich, “Cauchy–Schwarz inequality-based criteria for the non-classicality of sub-Poisson and antibunched light”, Phys. Lett. A, 380:1 (2016), 56–58 | DOI | MR

[13] I. Y. Aref'eva, M. A. Khramtsov, M. D. Tikhanovskaya, “Thermalization after holographic bilocal quench”, JHEP, 2017 (09), 115, 66 pp., arXiv: 1706.07390 | DOI

[14] V. Balasubramanian, A. Bernamonti, J. de Boer, N. Copland, B. Craps, E. Keski-Vakkuri, B. Müller, A. Schäfer, M. Shigemori, W. Staessens, “Holographic thermalization”, Phys. Rev. D, 84:2 (2011), 026010, 31 pp., arXiv: 1103.2683 | DOI

[15] S. Ryu, T. Takayanagi, “Holographic derivation of entanglement entropy from the anti-de Sitter space/conformal field theory correspondence”, Phys. Rev. Lett., 96:18 (2006), 181602, 4 pp., arXiv: hep-th/0603001

[16] V. E. Hubeny, M. Rangamani, T. Takayanagi, “A covariant holographic entanglement entropy proposal”, JHEP, 07 (2007), 062, 64 pp., arXiv: 0705.0016 | DOI | MR

[17] V. E. Hubeny, M. Rangamani, E. Tonni, “Thermalization of causal holographic information”, JHEP, 05 (2013), 136, 46 pp., arXiv: 1302.0853 | DOI | MR

[18] M. Alishahiha, M. R. M. Mozaffar, M. R. Tanhayi, “On the time evolution of holographic $n$-partite information”, JHEP, 09 (2015), 165, 61 pp., arXiv: 1406.7677 | DOI | MR

[19] O. Ben-Ami, D. Carmi, J. Sonnenschein, “Holographic entanglement entropy of multiple strips”, JHEP, 11 (2014), 144, 32 pp., arXiv: 1409.6305 | DOI