A possibility to describe models of massive non-Abelian gauge fields in the framework of a renormalizable theory
Teoretičeskaâ i matematičeskaâ fizika, Tome 193 (2017) no. 3, pp. 484-492 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We propose a renormalizable theory of massive non-Abelian gauge fields that does not require the existence of observable scalar fields.
Keywords: massive non-Abelian gauge field.
@article{TMF_2017_193_3_a7,
     author = {A. A. Slavnov},
     title = {A~possibility to describe models of massive {non-Abelian} gauge fields in the~framework of a~renormalizable theory},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {484--492},
     year = {2017},
     volume = {193},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2017_193_3_a7/}
}
TY  - JOUR
AU  - A. A. Slavnov
TI  - A possibility to describe models of massive non-Abelian gauge fields in the framework of a renormalizable theory
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2017
SP  - 484
EP  - 492
VL  - 193
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2017_193_3_a7/
LA  - ru
ID  - TMF_2017_193_3_a7
ER  - 
%0 Journal Article
%A A. A. Slavnov
%T A possibility to describe models of massive non-Abelian gauge fields in the framework of a renormalizable theory
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2017
%P 484-492
%V 193
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2017_193_3_a7/
%G ru
%F TMF_2017_193_3_a7
A. A. Slavnov. A possibility to describe models of massive non-Abelian gauge fields in the framework of a renormalizable theory. Teoretičeskaâ i matematičeskaâ fizika, Tome 193 (2017) no. 3, pp. 484-492. http://geodesic.mathdoc.fr/item/TMF_2017_193_3_a7/

[1] F. Englert, R. Brout, “Broken symmetry and the mass of gauge vector mesons”, Phys. Lett., 13:9 (1964), 321–323 | DOI | MR

[2] P. W. Higgs, “Broken symmetries, massless particles and gauge fields”, Phys. Lett., 12:2 (1964), 132–133 | DOI

[3] S. Weinberg, “A Model of leptons”, Phys. Rev. Lett., 19:21 (1967), 1264–1265 | DOI

[4] A. Salam, “Weak and electromagnetic interactions”, Elementary Particle Physics: Relativistic Groups and Analyticity, Proceedings of the Eighth Nobel Symposium (Aspenäsgarden, Lerum, Sweden, July 19–25, 1968 ed N. Svartholm), Almqvist and Wiksell, Stockholm, 1968, 367–377

[5] S. L. Glashow, “Partial-symmetries of weak interactions”, Nucl. Phys., 22:4 (1961), 579–588 | DOI

[6] A. A. Slavnov, “A Lorentz invariant formulation of the Yang–Mills theory with gauge invariant ghost field Lagrangian”, JHEP, 08 (2008), 047, 11 pp., arXiv: 0807.1795 | DOI | MR

[7] A. A. Slavnov, “Lorents-invariantnoe kvantovanie teorii Yanga–Millsa bez neodnoznachnosti Gribova”, TMF, 161:2 (2009), 204–211 | DOI | DOI | MR | Zbl

[8] A. A. Slavnov, “Lorents-invariantnoe kvantovanie teorii Yanga–Millsa bez neodnoznachnosti Gribova”, Tr. MIAN, 272 (2011), 246–255 | DOI | MR

[9] A. Quadri, A. A. Slavnov, “Renormalization of the Yang–Mills theory in the ambiguity-free gauge”, JHEP, 07 (2010), 087, 22 pp., arXiv: 1002.2490 | DOI | MR

[10] A. Kvadri, A. A. Slavnov, “Svobodnaya ot neodnoznachnosti formulirovka modeli Khiggsa–Kibbla”, TMF, 166:3 (2011), 336–349 | DOI | DOI | MR

[11] A. A. Slavnov, “Novyi podkhod k kvantovaniyu polya Yanga–Millsa”, TMF, 183:2 (2015), 163–176 | DOI | DOI | MR | Zbl

[12] A. A. Slavnov, “Kvantovanie modelei massivnykh neabelevykh kalibrovochnykh polei so spontanno narushennoi simmetriei vne ramok teorii vozmuschenii”, TMF, 189:2 (2016), 279–285 | DOI | DOI | Zbl

[13] V. N. Gribov, “Quantization of non-Abelian gauge theories”, Nucl. Phys. B, 139:1–2 (1978), 1–19 | DOI | MR

[14] K. Itsikson, Zh.-B. Zyuber, Kvantovaya teoriya polya, v. 2, Mir, M., 1984 | MR

[15] L. D. Faddeev, “O razdelenii effektov samodeistviya i rasseyaniya po teorii vozmuschenii”, Dokl. AN SSSR, 152:3 (1963), 573–576 | MR

[16] A. A. Slavnov, L. D. Faddeev, Vvedenie v kvantovuyu teoriyu kalibrovochnykh polei, Nauka, M., 1988 | MR

[17] J. M. Cornwall, D. N. Levin, G. Tiktopoulos, “Derivation of gauge invariance from high-energy unitarity bounds on the $S$ matrix”, Phys. Rev. D, 10:4 (1963), 1145–1167 | DOI