@article{TMF_2017_193_3_a7,
author = {A. A. Slavnov},
title = {A~possibility to describe models of massive {non-Abelian} gauge fields in the~framework of a~renormalizable theory},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {484--492},
year = {2017},
volume = {193},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2017_193_3_a7/}
}
TY - JOUR AU - A. A. Slavnov TI - A possibility to describe models of massive non-Abelian gauge fields in the framework of a renormalizable theory JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2017 SP - 484 EP - 492 VL - 193 IS - 3 UR - http://geodesic.mathdoc.fr/item/TMF_2017_193_3_a7/ LA - ru ID - TMF_2017_193_3_a7 ER -
%0 Journal Article %A A. A. Slavnov %T A possibility to describe models of massive non-Abelian gauge fields in the framework of a renormalizable theory %J Teoretičeskaâ i matematičeskaâ fizika %D 2017 %P 484-492 %V 193 %N 3 %U http://geodesic.mathdoc.fr/item/TMF_2017_193_3_a7/ %G ru %F TMF_2017_193_3_a7
A. A. Slavnov. A possibility to describe models of massive non-Abelian gauge fields in the framework of a renormalizable theory. Teoretičeskaâ i matematičeskaâ fizika, Tome 193 (2017) no. 3, pp. 484-492. http://geodesic.mathdoc.fr/item/TMF_2017_193_3_a7/
[1] F. Englert, R. Brout, “Broken symmetry and the mass of gauge vector mesons”, Phys. Lett., 13:9 (1964), 321–323 | DOI | MR
[2] P. W. Higgs, “Broken symmetries, massless particles and gauge fields”, Phys. Lett., 12:2 (1964), 132–133 | DOI
[3] S. Weinberg, “A Model of leptons”, Phys. Rev. Lett., 19:21 (1967), 1264–1265 | DOI
[4] A. Salam, “Weak and electromagnetic interactions”, Elementary Particle Physics: Relativistic Groups and Analyticity, Proceedings of the Eighth Nobel Symposium (Aspenäsgarden, Lerum, Sweden, July 19–25, 1968 ed N. Svartholm), Almqvist and Wiksell, Stockholm, 1968, 367–377
[5] S. L. Glashow, “Partial-symmetries of weak interactions”, Nucl. Phys., 22:4 (1961), 579–588 | DOI
[6] A. A. Slavnov, “A Lorentz invariant formulation of the Yang–Mills theory with gauge invariant ghost field Lagrangian”, JHEP, 08 (2008), 047, 11 pp., arXiv: 0807.1795 | DOI | MR
[7] A. A. Slavnov, “Lorents-invariantnoe kvantovanie teorii Yanga–Millsa bez neodnoznachnosti Gribova”, TMF, 161:2 (2009), 204–211 | DOI | DOI | MR | Zbl
[8] A. A. Slavnov, “Lorents-invariantnoe kvantovanie teorii Yanga–Millsa bez neodnoznachnosti Gribova”, Tr. MIAN, 272 (2011), 246–255 | DOI | MR
[9] A. Quadri, A. A. Slavnov, “Renormalization of the Yang–Mills theory in the ambiguity-free gauge”, JHEP, 07 (2010), 087, 22 pp., arXiv: 1002.2490 | DOI | MR
[10] A. Kvadri, A. A. Slavnov, “Svobodnaya ot neodnoznachnosti formulirovka modeli Khiggsa–Kibbla”, TMF, 166:3 (2011), 336–349 | DOI | DOI | MR
[11] A. A. Slavnov, “Novyi podkhod k kvantovaniyu polya Yanga–Millsa”, TMF, 183:2 (2015), 163–176 | DOI | DOI | MR | Zbl
[12] A. A. Slavnov, “Kvantovanie modelei massivnykh neabelevykh kalibrovochnykh polei so spontanno narushennoi simmetriei vne ramok teorii vozmuschenii”, TMF, 189:2 (2016), 279–285 | DOI | DOI | Zbl
[13] V. N. Gribov, “Quantization of non-Abelian gauge theories”, Nucl. Phys. B, 139:1–2 (1978), 1–19 | DOI | MR
[14] K. Itsikson, Zh.-B. Zyuber, Kvantovaya teoriya polya, v. 2, Mir, M., 1984 | MR
[15] L. D. Faddeev, “O razdelenii effektov samodeistviya i rasseyaniya po teorii vozmuschenii”, Dokl. AN SSSR, 152:3 (1963), 573–576 | MR
[16] A. A. Slavnov, L. D. Faddeev, Vvedenie v kvantovuyu teoriyu kalibrovochnykh polei, Nauka, M., 1988 | MR
[17] J. M. Cornwall, D. N. Levin, G. Tiktopoulos, “Derivation of gauge invariance from high-energy unitarity bounds on the $S$ matrix”, Phys. Rev. D, 10:4 (1963), 1145–1167 | DOI