The critical boundary RSOS $\mathcal{M}(3,5)$ model
Teoretičeskaâ i matematičeskaâ fizika, Tome 193 (2017) no. 3, pp. 466-483 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider the critical nonunitary minimal model $\mathcal{M}(3,5)$ with integrable boundaries and analyze the patterns of zeros of the eigenvalues of the transfer matrix and then determine the spectrum of the critical theory using the thermodynamic Bethe ansatz (TBA) equations. Solving the TBA functional equation satisfied by the transfer matrices of the associated $A_4$ restricted solid-on-solid Forrester–Baxter lattice model in regime III in the continuum scaling limit, we derive the integral TBA equations for all excitations in the $(r,s)=(1,1)$ sector and then determine their corresponding energies. We classify the excitations in terms of $(m,n)$ systems.
Keywords: $\mathcal{M}(3,5)$ model, conformal field theory, lattice model, Yang–Baxter integrability, nonunitary minimal model.
@article{TMF_2017_193_3_a6,
     author = {O. El Deeb},
     title = {The~critical boundary {RSOS} $\mathcal{M}(3,5)$ model},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {466--483},
     year = {2017},
     volume = {193},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2017_193_3_a6/}
}
TY  - JOUR
AU  - O. El Deeb
TI  - The critical boundary RSOS $\mathcal{M}(3,5)$ model
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2017
SP  - 466
EP  - 483
VL  - 193
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2017_193_3_a6/
LA  - ru
ID  - TMF_2017_193_3_a6
ER  - 
%0 Journal Article
%A O. El Deeb
%T The critical boundary RSOS $\mathcal{M}(3,5)$ model
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2017
%P 466-483
%V 193
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2017_193_3_a6/
%G ru
%F TMF_2017_193_3_a6
O. El Deeb. The critical boundary RSOS $\mathcal{M}(3,5)$ model. Teoretičeskaâ i matematičeskaâ fizika, Tome 193 (2017) no. 3, pp. 466-483. http://geodesic.mathdoc.fr/item/TMF_2017_193_3_a6/

[1] C. N. Yang, “Some exact results for the many-body problem in one dimension with repulsive delta-function interaction”, Phys. Rev. Lett., 19:23 (1967), 1312–1315 | DOI | MR | Zbl

[2] C. N. Yang, C. P. Yang, “Thermodynamics of a one-dimensional system of bosons with repulsive delta function interaction”, J. Math. Phys., 10:7 (1969), 1115–1122 | DOI | MR | Zbl

[3] Al. B. Zamolodchikov, “Thermodynamic Bethe ansatz in relativistic models: Scaling 3-state Potts and Lee–Yang models”, Nucl. Phys. B, 342:3 (1990), 695–720 | DOI | MR

[4] Al. B. Zamolodchikov, “Thermodynamic Bethe ansatz for RSOS scattering theories”, Nucl. Phys. B, 358:3 (1991), 497–523 | DOI | MR

[5] Al. B. Zamolodchikov, “From tricritical Ising to critical Ising by thermodynamic Bethe ansatz”, Nucl. Phys. B, 358:3 (1991), 524–546 | DOI | MR

[6] Al. B. Zamolodchikov, “TBA equations for integrable perturbed $SU(2)_{k}\times SU(2)_{l}/SU(2)_{k+l}$ coset models”, Nucl. Phys. B, 366:1 (122–132), 1991 | DOI | MR

[7] P. Dorey, R. Tateo, “Excited states by analytic continuation of TBA equations”, Nucl. Phys. B, 482:3 (1996), 639–659 | DOI | MR | Zbl

[8] Z. Bajnok, O. el Deeb, “Form factors in the presence of integrable defects”, Nucl. Phys. B, 832:3 (2010), 500–519 | DOI | MR

[9] T. D. Lee, C. N. Yang, “Statistical theory of equations of state and phase transitions. I. Theory of condensation”, Phys. Rev., 87:3 (1952), 404–409 ; “Statistical theory of equations of state and phase transitions II. Lattice gas and Ising model”, 410–419 | DOI | MR | Zbl | MR

[10] P. A. Pearce, A. Klümper, “Finite-size corrections and scaling dimensions of solvable lattice models: an analytic method”, Phys. Rev. Lett., 66:8 (1991), 974–977 | DOI | MR | Zbl

[11] A. Klümper, P. A. Pearce, “Analytic calculation of scaling dimensions: tricritical hard squares and critical hard hexagons”, J. Stat. Phys., 64:1–2 (1991), 13–76 | DOI | MR | Zbl

[12] A. Klümper, P. A. Pearce, “Conformal weights of RSOS lattice models and their fusion hierarchies”, Phys. A, 183:3 (1992), 304–350 | DOI | MR | Zbl

[13] R. Bekster, Tochno reshaemye modeli v statisticheskoi mekhanike, Mir, M., 1985 | MR

[14] D. L. O'Brien, P. A. Pearce, S. O. Warnaar, “Analytic calculation of conformal partition functions: tricritical hard squares with fixed boundaries”, Nucl. Phys. B, 501:3 (1997), 773–799 | DOI | MR | Zbl

[15] P. A. Pearce, L. Chim, C. Ahn, “Excited TBA equations I: massive tricritical Ising model”, Nucl. Phys. B, 601:3 (2001), 539–568, arXiv: hep-th/0012223 | DOI | Zbl

[16] P. A. Pearce, L. Chim, C. Ahn, “Excited TBA equations II: massless flow from tricritical to critical Ising model”, Nucl. Phys. B, 660:3 (2003), 579–606 | DOI | MR | Zbl

[17] C. Destri, H. J. de Vega, “New thermodynamic Bethe ansatz equations without strings”, Phys. Rev. Lett., 69:16 (1992), 2313–2317 | DOI | MR | Zbl

[18] C. Destri, H. J. de Vega, “Non-linear integral equation and excited states scaling functions in the sine-Gordon model”, Nucl. Phys. B, 504:3 (1997), 621–664 | DOI | MR

[19] D. Fioravanti, A. Mariottini, E. Quattrini, F. Ravanini, “Excited state Destri–De Vega equation for Sine-Gordon and restricted Sine-Gordon models”, Phys. Lett. B, 390:1–4 (1997), 243–251 | DOI | MR

[20] A. A. Belavin, A. M. Polyakov, A. B. Zamolodchikov, “Infinite conformal symmetry in two-dimensional quantum field theory”, Nucl. Phys. B, 241:2 (1984), 333–380 | DOI | MR | Zbl

[21] Z. Bajnok, O. el Deeb, P. A. Pearce, “Finite-volume spectra of the Lee–Yang model”, JHEP, 04 (2015), 073, 43 pp. | DOI | MR

[22] O. el Deeb, Lee–Yang model in presence of defects, arXiv: 1502.03976

[23] A. LeClair, G. Mussardo, H. Saleur, S. Skorik, “Boundary energy and boundary states in integrable quantum field theories”, Nucl. Phys. B, 453:3 (1995), 581–618 | DOI | MR | Zbl

[24] P. Dorey, A. J. Pocklington, R. Tateo, G. Watts, “TBA and TCSA with boundaries and excited states”, Nucl. Phys. B, 525:3 (1998), 641–663 | DOI | MR | Zbl

[25] P. Dorey, I. Runkel, R. Tateo, G. Watts, “g-Function flow in perturbed boundary conformal field theories”, Nucl. Phys. B, 578:1–2 (2000), 85–122 | DOI | MR | Zbl

[26] Z. Bajnok, Zs. Simon, “Solving topological defects via fusion”, Nucl. Phys. B, 802:3 (2008), 307–329 | DOI | MR | Zbl

[27] D. A. Huse, “Exact exponents for infinitely many new multi critical points”, Phys. Rev. B, 30:7 (1984), 3908–3915 | DOI | MR

[28] H. Riggs, “Solvable lattice models with minimal and non unitary critical behavior in two dimensions”, Nucl. Phys. B, 326:3 (1989), 673–688 | DOI | MR

[29] G. E. Andrews, R. J. Baxter, P. J. Forrester, “Eight-vertex SOS model and generalized Rogers–Ramanujan-type identities”, J. Stat. Phys., 35:3–4 (1984), 193–266 | DOI | MR | Zbl

[30] P. J. Forrester, R. J. Baxter, “Further exact solutions of the eight-vertex SOS model and generalizations of the Rogers–Ramanujan identities”, J. Stat. Phys., 38:3–4 (1985), 435–472 | DOI | MR | Zbl

[31] G. Feverati, P. A. Pearce, F. Ravanini, “Exact $\phi_{1,3}$ boundary flows of the tricritical Ising model”, Nucl. Phys. B, 675:3 (2003), 469–515 | DOI | MR | Zbl

[32] I. S. Gradshtein, I. M. Ryzhik, Tablitsy integralov, summ, ryadov i proizvedenii, Fizmatgiz, M., 1963 | MR | Zbl

[33] P. Di Francesco, P. Mathieu, D. Sénéchal, Conformal Field Theory, Springer Science and Business Media, New York, 2012 | DOI | MR

[34] R. J. Baxter, “Hard hexagons: exact solution”, J. Phys. A: Math. Gen., 13:3 (1980), L61–L70 | DOI | MR

[35] R. J. Baxter, P. A. Pearce, “Hard hexagons: interfacial tension and correlation length”, J. Phys. A: Math. Gen., 15:3 (1982), 897–910 | DOI | MR

[36] R. J. Baxter, P. A. Pearce, “Hard squares with diagonal attractions”, J. Phys. A: Math. Gen., 16:10 (1983), 2239–2255 | DOI | MR

[37] H. W. J. Blöte, J. L. Cardy, M. P. Nightingale, “Conformal invariance, the central charge, and universal finite-size amplitudes at criticality”, Phys. Rev. Lett., 56:7 (1986), 742–745 | DOI

[38] Yu. G. Stroganov, “A new calculation method for partition functions in some lattice models”, Phys. Lett. A, 74:1–2 (1979), 116–118 | DOI | MR

[39] R. J. Baxter, “The inversion relation method for some two-dimensional exactly solved models in lattice statistics”, J. Stat. Phys., 28:1 (1982), 1–41 | DOI | MR

[40] D. L. O'Brien, P. A. Pearce, “Surface free energies, interfacial tensions and correlation lengths of the ABF models”, J. Phys. A: Math. Gen., 30:7 (1997), 2353–2366 | DOI | MR | Zbl

[41] R. E. Behrend, P. A. Pearce, D. L. O'Brien, “Interaction-round-a-face models with fixed boundary conditions: The ABF fusion hierarchy”, J. Stat. Phys., 84:1–2 (1996), 1–48 | DOI | MR | Zbl

[42] R. E. Behrend, P. A. Pearce, “Integrable and conformal boundary conditions for $\widehat{s\ell}(2)$ $A$–$D$–$E$ lattice models and unitary minimal conformal field theories”, J. Stat. Phys., 102:3–4 (2001), 577–640 | DOI | MR | Zbl

[43] O. Foda, T. A. Welsh, “On the combinatorics of Forrester–Baxter models”, Physical Combinatorics (Kyoto, Japan, January 29 – February 2, 1999), Progress in Mathematics, 191, eds. M. Kashiwara, T. Miwa, Birkhäuser, Boston, MA, 2000, 49–103 | MR | Zbl

[44] G. Feverati, P. A. Pearce, N. S. Witte, “Physical combinatorics and quasiparticles”, J. Stat. Mech., 2009:10 (2009), P10013, 54 pp. | DOI | MR

[45] R. J. Baxter, “Corner transfer matrices of the eight-vertex model I. Low temperature expansions and conjectured properties”, J. Stat. Phys., 15:6 (1976), 485–503 | DOI | MR

[46] R. J. Baxter, “Corner transfer matrices of the eight-vertex model II. The Ising model case”, J. Stat. Phys., 17:1 (1977), 1–14 | DOI | MR

[47] E. Melzer, “Fermionic character sums and the corner transfer matrix”, Internat. J. Modern Phys. A, 9:7 (1994), 1115–1136 | DOI | MR | Zbl

[48] A. Berkovich, “Fermionic counting of RSOS states and Virasoro character formulas for the unitary minimal series $M(v;v+1)$: exact results”, Nucl. Phys. B, 431:1–2 (1994), 315–348 | DOI | MR | Zbl

[49] C. H. O. Chui, C. Mercat, P. A. Pearce, “Integrable boundaries and universal TBA functional equations”, MathPhys Odyssey 2001. Integrable Models and Beyond. In Honor of Barry M. McCoy, Progess in Mathematical Physics, 23, eds. M. Kashiwara, T. Miwa, Birkhäuser, Boston, MA, 2002, 391–413, arXiv: hep-th/0108037 | MR | Zbl

[50] Z. Bajnok, F. Buccheri, L. Hollo, J. Konczer, G. Takacs, “Finite volume form factors in the presence of integrable defects”, Nucl. Phys. B, 882 (2014), 501–531 | DOI | MR | Zbl