Keywords: bilinear transformation method
@article{TMF_2017_193_3_a4,
author = {Jiguang Rao and Lihong Wang and Wei Liu and Jingsong He},
title = {Rogue-wave solutions of {the~Zakharov} equation},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {434--454},
year = {2017},
volume = {193},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2017_193_3_a4/}
}
TY - JOUR AU - Jiguang Rao AU - Lihong Wang AU - Wei Liu AU - Jingsong He TI - Rogue-wave solutions of the Zakharov equation JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2017 SP - 434 EP - 454 VL - 193 IS - 3 UR - http://geodesic.mathdoc.fr/item/TMF_2017_193_3_a4/ LA - ru ID - TMF_2017_193_3_a4 ER -
Jiguang Rao; Lihong Wang; Wei Liu; Jingsong He. Rogue-wave solutions of the Zakharov equation. Teoretičeskaâ i matematičeskaâ fizika, Tome 193 (2017) no. 3, pp. 434-454. http://geodesic.mathdoc.fr/item/TMF_2017_193_3_a4/
[1] C. Garrett, J. Gemmrich, “Rogue waves”, Phys. Today, 62:6 (2009), 62–71 | DOI
[2] E. Pelinovsky, C. Kharif, Extreme Ocean Waves, Springer, New York, 2008 | MR
[3] A. R. Osborne, Nonlinear Ocean Waves and the Inverse Scattering Transform, International Geophysics Series, 97, Academic Press, New York, 2010 | MR
[4] Y. V. Bludov, V. V. Konotop, N. Akhmediev, “Matter rogue waves”, Phys. Rev. A, 80:3 (2009), 033610, 5 pp. | DOI
[5] Y. V. Bludov, V. V. Konotop, N. Akhmediev, “Vector rogue waves in binary mixtures of Bose–Einstein condensates”, Eur. Phys. J. Spec. Top., 185:1 (2010), 169–180 | DOI
[6] A. Montina, U. Bortolozzo, S. Residori, F. T. Arecchi, “Non-Gaussian statistics and extreme waves in a nonlinear optical cavity”, Phys. Rev. Lett., 103:17 (2009), 173901, 4 pp. | DOI
[7] D. R. Solli, C. Ropers, P. Koonath, B. Jalali, “Optical rogue waves”, Nature, 450 (2007), 1054–1057 | DOI
[8] R. Höhmann, U. Kuhl, H.-J. Stöckmann, L. Kaplan, E. J. Heller, “Freak waves in the linear regime: a microwave study”, Phys. Rev. Lett., 104:9 (2010), 093901, 4 pp. | DOI
[9] A. N. Ganshin, V. B. Efimov, G. V. Kolmakov, L. P. Mezhov-Deglin, P. V. E. McClintock, “Observation of an inverse energy cascade in developed acoustic turbulence in superfluid helium”, Phys. Rev. Lett., 101:6 (2008), 065303, 4 pp. | DOI
[10] W. M. Moslem, “Langmuir rogue waves in electron-positron plasmas”, Phys. Plasmas, 18:3 (2011), 032301 | DOI
[11] H. Bailung, S. K. Sharma, Y. Nakamura, “Observation of peregrine solitons in a multicomponent plasma with negative ions”, Phys. Rev. Lett., 107:25 (2011), 255005, 4 pp. | DOI
[12] N. Akhmediev, A. Ankiewicz, M. Taki, “Waves that appear from nowhere and disappear without a trace”, Phys. Lett. A, 373:6 (2009), 675–678 | DOI | Zbl
[13] D. H. Peregrine, “Water waves, nonlinear Schrödinger equations and their solutions”, J. Austral. Math. Soc. Ser. B, 25 (1983), 16–43 | DOI | MR | Zbl
[14] N. N. Akhmediev, V. M. Eleonskii, N. E. Kulagin, “Generatsiya periodicheskoi posledovatelnosti pikosekundnykh impulsov v opticheskom volokne. Tochnye resheniya”, ZhETF, 89:5 (1985), 1542–1551
[15] A. Ankiewicz, J. M. Soto-Crespo, N. Akhmediev, “Rogue waves and rational solutions of the Hirota equation”, Phys. Rev. E, 81 (2010), 046602, 8 pp. | DOI | MR
[16] N. Akhmediev, A. Ankiewicz, J. M. Soto-Crespo, “Rogue waves and rational solutions of the nonlinear Schrödinger equation”, Phys. Rev. E, 80:2 (2009), 026601, 9 pp. | DOI
[17] V. V. Voronovich, V. I. Shrira, G. Thomas, “Can bottom friction suppress ‘freak wave’ formation?”, J. Fluid Mech., 604 (2008), 263–296 | DOI | MR
[18] B. Kibler, J. Fatome, C. Finot, G. Millot, F. Dias, G. Genty, N. Akhmediev, J. M. Dudley, “The Peregrine soliton in nonlinear fibre optics”, Nat. Phys., 6 (2010), 790–795 | DOI
[19] A. Chabchoub, N. P. Hoffmann, N. Akhmediev, “Rogue wave observation in a water wave tank”, Phys. Rev. Lett., 106:20 (2011), 204502, 4 pp. | DOI
[20] S. W. Xu, J. S. He, L. H. Wang, “The Darboux transformation of the derivative nonlinear Schrödinger equation”, J. Phys. A: Math. Theor., 44:30 (2011), 305203, 22 pp. | DOI | MR | Zbl
[21] Y. S. Tao, J. S. He, “Multisolitons, breathers, and rogue waves for the Hirota equation generated by the Darboux transformation”, Phys. Rev. E, 85:2 (2012), 026601, 7 pp. | DOI
[22] S. W. Xu and J. S. He, “The rogue wave and breather solution of the Gerdjikov–Ivanov equation”, J. Math. Phys., 53:6 (2012), 063507, 17 pp. | DOI | MR | Zbl
[23] J. S. He, H. R. Zhang, L. H. Wang, K. Porsezian, A. S. Fokas, “Generating mechanism for higher-order rogue waves”, Phys. Rev. E, 87:5 (2013), 052914, 10 pp. | DOI
[24] J. S. He, L. H. Wang, L. J. Li, K. Porsezian, R. Erdélyi, “Few-cycle optical rogue waves: complex modified Korteweg–de Vries equation”, Phys. Rev. E, 89:6 (2014), 062917, 19 pp. | DOI
[25] Y. S. Zhang, L. J. Guo, J. S. He, Z. X. Zhou, Lett. Math. Phys., 105:6 (2015), 853–891 | DOI | MR | Zbl
[26] D. Q. Qiu, J. S. He, Y. S. Zhang, K. Porsezian, “The Darboux transformation of the Kundu–Eckhaus equation”, Proc. R. Soc. A, 471 (2015), 20150236, 20 pp. | DOI | MR
[27] M. Onorato, S. Residori, U. Bortolozzo, A. Montinad, F. T. Arecchi, Phys. Rep., 528:2 (2013), 47–89 | DOI | MR
[28] N. Akhmediev, J. M. Dudley, D. R. Solli, S. K. Turitsyn, “Recent progress in investigating optical rogue waves”, J. Opt., 15:6 (2013), 060201, 10 pp. | DOI
[29] Y. Ohta, J. K. Yang, “Rogue waves in the Davey–Stewartson I equation”, Phys. Rev. E, 86:3 (2012), 036604, 8 pp. | DOI
[30] Y. Ohta, J. K. Yang, “Dynamics of rogue waves in the Davey–Stewartson II equation”, J. Phys. A: Math. Theor., 46:10 (2013), 105202, 19 pp. | DOI | MR | Zbl
[31] J. C. Chen, Y. Chen, B. F. Feng, Phys. Lett. A, 379:24–25 (2015), 1510–1519 | DOI | MR
[32] C. Kharif, E. Pelinovsky, “Physical mechanisms of the rogue wave phenomenon”, Eur. J. Mech. B Fluids, 22:6 (2003), 603–634 | DOI | MR | Zbl
[33] P. Dubard, V. B. Matveev, “Multi-rogue waves solutions: from the NLS to the KP-I equation”, Nonlinearity, 26:12 (2013), R93–R125 | DOI | MR | Zbl
[34] V. B. Matveev, A. O. Smirnov, “Resheniya tipa ‘voln-ubiits’ uravnenii ierarkhii Ablovitsa–Kaupa–Nyuella–Sigura: edinyi podkhod”, TMF, 186:2 (2016), 191–220 | DOI | DOI | MR
[35] Zhaqilao, “Rogue waves and rational solutions of a $(3+1)$-dimensional nonlinear evolution equation”, Phys. Lett. A, 377:42 (2013), 3021–3026 | DOI | MR
[36] V. E. Zakharov, Solitons, Topics in Current Physics, 17, eds. R. K. Bullough, P. J. Caudrey, Springer, Berlin, 1980 | MR
[37] I. A. B. Strachan, “A new family of integrable models in $(2+1)$ dimensions associated with Hermitian symmetric spaces”, J. Math. Phys., 33:7 (1992), 2477–2482 | DOI | MR
[38] I. A. B. Strachan, “Some integrable hierarchies in $(2+1)$ dimensions and their twistor description”, J. Math. Phys., 34:1 (1993), 243–259 | DOI | MR
[39] I. A. B. Strachan, “Wave solutions of a $(2+1)$-dimensional generalization of the nonlinear Schrödinger equation”, Inverse Problems, 8:5 (1992), L21–L27 | DOI | MR | Zbl
[40] P. G. Estevez, G. A. Hernáez, “Lax pair, Darboux transformations and solitonic solutions for a $(2+1)$ dimensional NLSE”, arXiv: solv-int/9910005v1
[41] R. Radha, M. Lakshmanan, “Singularity structure analysis and bilinear form of a $(2+1)$ dimensional nonlinear Schrödinger (NLS) equation”, Inverse Problems, 10:4 (1994), L29–L33 | DOI | MR | Zbl
[42] Y. S. Li, Y. J. Zhang, “Symmetries of a $(2+1)$-dimensional breaking soliton equation”, J. Phys. A: Math. Gen., 26:24 (1993), 7487–7494 | DOI | MR | Zbl
[43] R. Myrzakulov, S. Vijayalakshmi, G. N. Nugmanovaa, M. Lakshmanan, “A $(2+1)$-dimensional integrable spin model: geometrical and gauge equivalent counterpart, solitons and localized coherent structures”, Phys. Lett. A, 233:4–6 (1997), 391–396 | DOI | MR | Zbl
[44] R. Radha, M. Lakshmanan, Chaos Solitons Fractals, 8:1 (1997), 17–25 | DOI | MR | Zbl
[45] R. Radha, M. Lakshmanan, “A new class of induced coherent structures in the $(2+1)$-dimensional nonlinear Schrödinger equation”, J. Phys. A: Math. Gen., 30:9 (1997), 3229–3233 | DOI | MR | Zbl
[46] H. Q. Zhang, B. Tian, L. L. Li, Y. S. Xue, “Darboux transformation and soliton solutions for the $(2+1)$-dimensional nonlinear Schrödinger hierarchy with symbolic computation”, Phys. A, 288 (2009), 9–20 | DOI
[47] R. Hirota, The Direct Method in Soliton Theory, Cambridge Tracts in Mathematics, 155, Cambridge Univ. Press, Cambridge, 2004 | DOI | MR
[48] Y. Ohta, J. K. Yang, “General high-order rogue waves and their dynamics in the nonlinear Schrödinger equation”, Proc. R. Soc. A, 468:2142 (2012), 1716–1740 | DOI
[49] P. Dubard, V. B. Matveev, “Multi-rogue waves solutions to the focusing NLS equation and the KP-I equation”, Nat. Hazards Earth Syst. Sci., 11 (2011), 667–672 | DOI
[50] A. Ankiewicz, P. Clarkson, N. Akhmediev, J. Phys. A: Math. Theor., 43:12 (2010), 122002, 9 pp. | DOI | MR | Zbl
[51] P. Dubard, P. Gaillard, C. Klein, V. B. Matveev, “On multi-rogue wave solutions of the NLS equation and positon solutions of the KdV equation”, Eur. Phys. J. Special Topics, 185:1 (2010), 247–258 | DOI
[52] P. Dubard, Multi-rogue solutions to the focusing NLS equation, PhD thesis, Université de Bourgogne, Dijon, France, 2010
[53] P. Gaillard, “Families of quasi-rational solutions of the NLS equation and multi-rogue waves”, J. Phys. A: Math. Theor., 44:43 (2011), 435204, 15 pp. | DOI | Zbl
[54] P. Gaillard, “Degenerate determinant representation of solutions of the nonlinear Schrödinger equation, higher order Peregrine breathers and multi-rogue waves”, J. Math. Phys., 54:1 (2013), 013504, 32 pp. | DOI | MR | Zbl
[55] D. J. Kedziora, A. Ankiewicz, N. Akhmediev, “Circular rogue wave clusters”, Phys. Rev. E, 84:5 (2011), 056611, 7 pp. | DOI