Mots-clés : Heun equation, antiquantization, Painlevé equation.
@article{TMF_2017_193_3_a2,
author = {S. Yu. Slavyanov},
title = {Symmetries and apparent singularities for the~simplest {Fuchsian} equations},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {401--408},
year = {2017},
volume = {193},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2017_193_3_a2/}
}
S. Yu. Slavyanov. Symmetries and apparent singularities for the simplest Fuchsian equations. Teoretičeskaâ i matematičeskaâ fizika, Tome 193 (2017) no. 3, pp. 401-408. http://geodesic.mathdoc.fr/item/TMF_2017_193_3_a2/
[1] S. Slavyanov, V. Lai, Spetsialnye funktsii. Edinaya teoriya, osnovannaya na analize singulyarnostei, Nevskii dialekt, SPb., 2002 | MR | Zbl
[2] A. Ronveau (ed.), Heun's Differential Equation, Oxford Univ. Press, Oxford, 1995 | MR
[3] A. V. Shanin, R. V. Craster, “Removing false singular points as a method of solving ordinary differential equations”, European J. Appl. Math., 13:6 (2002), 617–639 | DOI | MR | Zbl
[4] S. Yu. Slavyanov, D. A. Shatko, A. M. Ishkhanyan, T. A. Rotinyan, “Generatsiya i udalenie lozhnykh osobennostei v lineinykh obyknovennykh differentsialnykh uravneniyakh s polinomialnymi koeffitsientami”, TMF, 189:3 (2016), 371–379 | DOI | DOI | MR
[5] S. Yu. Slavyanov, “O ponizhenii polinomialnoi stepeni fuksovoi ($2\times 2$)-sistemy”, TMF, 182:2 (2015), 223–230 | DOI | DOI | MR
[6] S. Yu. Slavyanov, O. L. Stesik, “Antikvantovanie deformirovannykh uravnenii klassa Goina”, TMF, 186:1 (2016), 142–151 | DOI | DOI | MR
[7] A. Ishkhanyan, K. Suominen, “New solutions of Heun's general equation”, J. Phys. A: Math. Gen., 36:5 (2003), L81–L86 | DOI | MR
[8] A. Ya. Kazakov, S. Yu. Slavyanov, “Integralnye simmetrii Eilera dlya deformirovannogo uravneniya Goina i simmetrii uravneniya Penleve PVI”, TMF, 155:2 (2008), 252–264 | DOI | DOI | MR | Zbl
[9] A. D. Bruno, A. B. Batkhin (eds.), Painlevé Equations and Related Topics, Proceedings of the International Conference (Saint Petersburg, June 17–23, 2011), De Gruyter, Berlin, 2012 | MR
[10] S. Yu. Slavyanov, “Painlevé equations as classical analogues of Heun equations”, J. Phys. A: Math. Gen., 29:22 (1996), 7329–7335 | DOI | MR | Zbl