@article{TMF_2017_193_3_a13,
author = {Xiao Yang and Jiayan Han},
title = {Algebraic-geometric solutions of the {Dirac} hierarchy},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {563--574},
year = {2017},
volume = {193},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2017_193_3_a13/}
}
Xiao Yang; Jiayan Han. Algebraic-geometric solutions of the Dirac hierarchy. Teoretičeskaâ i matematičeskaâ fizika, Tome 193 (2017) no. 3, pp. 563-574. http://geodesic.mathdoc.fr/item/TMF_2017_193_3_a13/
[1] B. M. Levitan, I. S. Sargsjan, Sturm–Liouville and Dirac Operators, Kluwer, Dordrecht, 1991 | DOI | MR
[2] M. G. Gasymov, “Obratnaya zadacha teorii rasseyaniya dlya sistemy uravnenii Diraka poryadka $2n$”, Tr. MMO, 19, Izd-vo Mosk. un-ta, M., 1968, 41–112 | MR | Zbl
[3] D. B. Hinton, A. K. Jordan, M. Klausand, J. K. Shaw, “Inverse scattering on the line for a Dirac system”, J. Math. Phys., 32:11 (1991), 3015–3030 | DOI | MR
[4] R. K. Amirov, B. Keskin, A. S. Ozkan, “Direct and inverse problems for the Dirac operator with a spectral parameter linearly contained in a boundary condition”, Ukr. Math. J., 61:9 (2010), 1365–1379 | DOI | MR
[5] I. S. Frolov, “Obratnaya zadacha rasseyaniya dlya sistemy Diraka na vsei osi”, Dokl. AN SSSR, 207:1 (1972), 44–47 | MR | Zbl
[6] W.-X. Ma, K.-S. Li, “Virasoro symmetry algebra of Dirac soliton hierarchy”, Inverse Problems, 12:6 (1996), L25–L31 | DOI | MR
[7] E. G. Fan, “$N$-fold Darboux transformation and soliton solutions for a nonlinear Dirac system”, J. Phys. A: Math. Gen., 38:5 (2005), 1063–1069 | DOI | MR
[8] A. Kishimoto, H. Nakamura, “Super-derivations”, Commun. Math. Phys., 159:1 (1994), 15–27 | DOI | MR
[9] D. L. Du, X. Geng, “Symplectic realizations and action-angle coordinates for the Lie–Poisson system of Dirac hierarchy”, Appl. Math. Comput., 244 (2014), 222–234 | DOI | MR
[10] C. S. Gardner, J. M. Greene, M. D. Kruskal, R. M. Miura, “Korteweg–de Vries equation and generalizations. VI. Methods for exact solution”, Commun. Pure Appl. Math., 27:1 (1974), 97–133 | DOI | MR
[11] P. D. Lax, “Almost periodic solutions of the KdV equation”, SIAM Rev., 18:3 (1976), 351–375 | DOI | MR
[12] P. J. Olver, “Evolution equations possessing infinitely many symmetries”, J. Math. Phys., 18:6 (1977), 1212–1215 | DOI | MR
[13] F. Magri, “Tsepi Lenarda dlya klassicheskikh integriruemykh sistem”, TMF, 137:3 (2003), 424–432 | DOI | DOI | MR | Zbl
[14] A. R. Its, V. P. Kotlyarov, “Ob odnom klasse reshenii nelineinogo uravneniya Shredingera”, Dokl. AN USSR, 11 (1976), 965–968 | MR
[15] E. R. Tracy, H. H. Chen, “Nonlinear self-modulation: an exactly solvable model”, Phys. Rev. A, 37:3 (1988), 815–839 | DOI
[16] E. D. Belokolos, A. I. Bobenko, V. Z. Enol'skii, A. R. Its, V. B. Matveev, Algebro-Geometric Approach to Nonlinear Integrable Equations, Springer, Berlin, 1994 | Zbl
[17] V. E. Zakharov, A. B. Shabat, “Tochnaya teoriya dvumernoi samofokusirovki i odnomernoi avtomodulyatsii voln v nelineinykh sredakh”, ZhETF, 61:1 (1971), 118–134 | MR
[18] M. J. Ablowitz, D. J. Kaup, A. C. Newell, H. Segur, “The inverse scattering transform-Fourier analysis for nonlinear problems”, Stud. Appl. Math., 53:4 (1974), 249–315 | Zbl
[19] C. W. Cao, X. G. Geng, “C Neumann and Bargmann systems associated with the coupled KdV soliton hierarchy”, J. Phys. A: Math. Gen., 23:18 (1990), 4117–4125 | DOI | MR
[20] W. X. Ma, “Symmetry constraint of MKdV equations by binary nonlinearization”, Phys. A, 219:3–4 (1995), 467–481 | DOI | MR
[21] J. Moser, “Various aspects of integrable Hamiltonian systems”, Dynamical Systems, Lectures given at a Summer School of the Centro Internazionale Matematico Estivo (C.I.M.E.) (Bressanone (Bolzano), Italy, June 19–27, 1978), Progress in Mathematics, 8, eds. J. Guckenheimer, J. Moser, S. E. Newhouse, Birkhäuser, Boston, 1980, 233–289 | DOI | MR
[22] C. W. Cao, Y. T. Wu, X. G. Geng, “Relation between the Kadometsev–Petviashvili equation and the confocal involutive system”, J. Math. Phys., 40:8 (1999), 3948–3970 | DOI | MR
[23] P. Griffiths, J. Harris, Principles of Algebraic Geometry, John Wiley and Sons, New York, 1978 | MR
[24] D. Mamford, Lektsii o teta-funktsiyakh, Mir, M., 1988 | MR | MR
[25] F. Gesztesy, H. Holden, Soliton Equations and Their Algebro-Geometric Solutions, Cambridge Studies in Advanced Mathematics, 79, Cambridge Univ. Press, Cambridge, 2003 | DOI | MR