Algebraic-geometric solutions of the Dirac hierarchy
Teoretičeskaâ i matematičeskaâ fizika, Tome 193 (2017) no. 3, pp. 563-574 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A Lenard equation is introduced, its two special solutions are given. One is used to derive an exceptional Dirac hierarchy, the other is applied to construct the generation function. The generation function yields conserved integrals of the Dirac Hamiltonian system, and defines an algebraic curve. Based on the theory of algebraic curve, the Dirac Hamiltonian system is proved to be integrable, the algebraic-geometric solutions of the Dirac hierarchy are obtained.
Keywords: Lenard equation; Dirac hierarchy; algebraic-geometric solution.
@article{TMF_2017_193_3_a13,
     author = {Xiao Yang and Jiayan Han},
     title = {Algebraic-geometric solutions of the {Dirac} hierarchy},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {563--574},
     year = {2017},
     volume = {193},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2017_193_3_a13/}
}
TY  - JOUR
AU  - Xiao Yang
AU  - Jiayan Han
TI  - Algebraic-geometric solutions of the Dirac hierarchy
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2017
SP  - 563
EP  - 574
VL  - 193
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2017_193_3_a13/
LA  - ru
ID  - TMF_2017_193_3_a13
ER  - 
%0 Journal Article
%A Xiao Yang
%A Jiayan Han
%T Algebraic-geometric solutions of the Dirac hierarchy
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2017
%P 563-574
%V 193
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2017_193_3_a13/
%G ru
%F TMF_2017_193_3_a13
Xiao Yang; Jiayan Han. Algebraic-geometric solutions of the Dirac hierarchy. Teoretičeskaâ i matematičeskaâ fizika, Tome 193 (2017) no. 3, pp. 563-574. http://geodesic.mathdoc.fr/item/TMF_2017_193_3_a13/

[1] B. M. Levitan, I. S. Sargsjan, Sturm–Liouville and Dirac Operators, Kluwer, Dordrecht, 1991 | DOI | MR

[2] M. G. Gasymov, “Obratnaya zadacha teorii rasseyaniya dlya sistemy uravnenii Diraka poryadka $2n$”, Tr. MMO, 19, Izd-vo Mosk. un-ta, M., 1968, 41–112 | MR | Zbl

[3] D. B. Hinton, A. K. Jordan, M. Klausand, J. K. Shaw, “Inverse scattering on the line for a Dirac system”, J. Math. Phys., 32:11 (1991), 3015–3030 | DOI | MR

[4] R. K. Amirov, B. Keskin, A. S. Ozkan, “Direct and inverse problems for the Dirac operator with a spectral parameter linearly contained in a boundary condition”, Ukr. Math. J., 61:9 (2010), 1365–1379 | DOI | MR

[5] I. S. Frolov, “Obratnaya zadacha rasseyaniya dlya sistemy Diraka na vsei osi”, Dokl. AN SSSR, 207:1 (1972), 44–47 | MR | Zbl

[6] W.-X. Ma, K.-S. Li, “Virasoro symmetry algebra of Dirac soliton hierarchy”, Inverse Problems, 12:6 (1996), L25–L31 | DOI | MR

[7] E. G. Fan, “$N$-fold Darboux transformation and soliton solutions for a nonlinear Dirac system”, J. Phys. A: Math. Gen., 38:5 (2005), 1063–1069 | DOI | MR

[8] A. Kishimoto, H. Nakamura, “Super-derivations”, Commun. Math. Phys., 159:1 (1994), 15–27 | DOI | MR

[9] D. L. Du, X. Geng, “Symplectic realizations and action-angle coordinates for the Lie–Poisson system of Dirac hierarchy”, Appl. Math. Comput., 244 (2014), 222–234 | DOI | MR

[10] C. S. Gardner, J. M. Greene, M. D. Kruskal, R. M. Miura, “Korteweg–de Vries equation and generalizations. VI. Methods for exact solution”, Commun. Pure Appl. Math., 27:1 (1974), 97–133 | DOI | MR

[11] P. D. Lax, “Almost periodic solutions of the KdV equation”, SIAM Rev., 18:3 (1976), 351–375 | DOI | MR

[12] P. J. Olver, “Evolution equations possessing infinitely many symmetries”, J. Math. Phys., 18:6 (1977), 1212–1215 | DOI | MR

[13] F. Magri, “Tsepi Lenarda dlya klassicheskikh integriruemykh sistem”, TMF, 137:3 (2003), 424–432 | DOI | DOI | MR | Zbl

[14] A. R. Its, V. P. Kotlyarov, “Ob odnom klasse reshenii nelineinogo uravneniya Shredingera”, Dokl. AN USSR, 11 (1976), 965–968 | MR

[15] E. R. Tracy, H. H. Chen, “Nonlinear self-modulation: an exactly solvable model”, Phys. Rev. A, 37:3 (1988), 815–839 | DOI

[16] E. D. Belokolos, A. I. Bobenko, V. Z. Enol'skii, A. R. Its, V. B. Matveev, Algebro-Geometric Approach to Nonlinear Integrable Equations, Springer, Berlin, 1994 | Zbl

[17] V. E. Zakharov, A. B. Shabat, “Tochnaya teoriya dvumernoi samofokusirovki i odnomernoi avtomodulyatsii voln v nelineinykh sredakh”, ZhETF, 61:1 (1971), 118–134 | MR

[18] M. J. Ablowitz, D. J. Kaup, A. C. Newell, H. Segur, “The inverse scattering transform-Fourier analysis for nonlinear problems”, Stud. Appl. Math., 53:4 (1974), 249–315 | Zbl

[19] C. W. Cao, X. G. Geng, “C Neumann and Bargmann systems associated with the coupled KdV soliton hierarchy”, J. Phys. A: Math. Gen., 23:18 (1990), 4117–4125 | DOI | MR

[20] W. X. Ma, “Symmetry constraint of MKdV equations by binary nonlinearization”, Phys. A, 219:3–4 (1995), 467–481 | DOI | MR

[21] J. Moser, “Various aspects of integrable Hamiltonian systems”, Dynamical Systems, Lectures given at a Summer School of the Centro Internazionale Matematico Estivo (C.I.M.E.) (Bressanone (Bolzano), Italy, June 19–27, 1978), Progress in Mathematics, 8, eds. J. Guckenheimer, J. Moser, S. E. Newhouse, Birkhäuser, Boston, 1980, 233–289 | DOI | MR

[22] C. W. Cao, Y. T. Wu, X. G. Geng, “Relation between the Kadometsev–Petviashvili equation and the confocal involutive system”, J. Math. Phys., 40:8 (1999), 3948–3970 | DOI | MR

[23] P. Griffiths, J. Harris, Principles of Algebraic Geometry, John Wiley and Sons, New York, 1978 | MR

[24] D. Mamford, Lektsii o teta-funktsiyakh, Mir, M., 1988 | MR | MR

[25] F. Gesztesy, H. Holden, Soliton Equations and Their Algebro-Geometric Solutions, Cambridge Studies in Advanced Mathematics, 79, Cambridge Univ. Press, Cambridge, 2003 | DOI | MR