Algebraic-geometric solutions of the Dirac hierarchy
    
    
  
  
  
      
      
      
        
Teoretičeskaâ i matematičeskaâ fizika, Tome 193 (2017) no. 3, pp. 563-574
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			A Lenard equation is introduced, its two special solutions are given. One is used to
derive an exceptional Dirac hierarchy, the other is applied to construct the generation
function. The generation function yields conserved integrals of the Dirac Hamiltonian
system, and defines an algebraic curve. Based on the theory of algebraic curve,
the Dirac Hamiltonian system is proved to be integrable, the algebraic-geometric
solutions of the Dirac hierarchy are obtained.
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Keywords: 
Lenard equation; Dirac hierarchy; algebraic-geometric solution.
                    
                  
                
                
                @article{TMF_2017_193_3_a13,
     author = {Xiao Yang and Jiayan Han},
     title = {Algebraic-geometric solutions of the {Dirac} hierarchy},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {563--574},
     publisher = {mathdoc},
     volume = {193},
     number = {3},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2017_193_3_a13/}
}
                      
                      
                    Xiao Yang; Jiayan Han. Algebraic-geometric solutions of the Dirac hierarchy. Teoretičeskaâ i matematičeskaâ fizika, Tome 193 (2017) no. 3, pp. 563-574. http://geodesic.mathdoc.fr/item/TMF_2017_193_3_a13/
