Mots-clés : $\Lambda$-term.
@article{TMF_2017_193_3_a11,
author = {J. K. Singh and N. K. Sharma and A. Beesham},
title = {A~Bianchi {type-II} dark-energy cosmology with a~decaying $\Lambda$-term in {the~Brans{\textendash}Dicke} theory of gravity},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {530--546},
year = {2017},
volume = {193},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2017_193_3_a11/}
}
TY - JOUR AU - J. K. Singh AU - N. K. Sharma AU - A. Beesham TI - A Bianchi type-II dark-energy cosmology with a decaying $\Lambda$-term in the Brans–Dicke theory of gravity JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2017 SP - 530 EP - 546 VL - 193 IS - 3 UR - http://geodesic.mathdoc.fr/item/TMF_2017_193_3_a11/ LA - ru ID - TMF_2017_193_3_a11 ER -
%0 Journal Article %A J. K. Singh %A N. K. Sharma %A A. Beesham %T A Bianchi type-II dark-energy cosmology with a decaying $\Lambda$-term in the Brans–Dicke theory of gravity %J Teoretičeskaâ i matematičeskaâ fizika %D 2017 %P 530-546 %V 193 %N 3 %U http://geodesic.mathdoc.fr/item/TMF_2017_193_3_a11/ %G ru %F TMF_2017_193_3_a11
J. K. Singh; N. K. Sharma; A. Beesham. A Bianchi type-II dark-energy cosmology with a decaying $\Lambda$-term in the Brans–Dicke theory of gravity. Teoretičeskaâ i matematičeskaâ fizika, Tome 193 (2017) no. 3, pp. 530-546. http://geodesic.mathdoc.fr/item/TMF_2017_193_3_a11/
[1] S. Perlmutter, G. Aldering, G. Goldhaber et al. [Supernova Cosmology Project Collab.], “Measurements of $\Omega$ and $\Lambda$ from 42 high-redshift supernovae”, Astrophys. J., 517:2 (1999), 565–586 | DOI
[2] A. G. Riess, A. V. Filippenko, P. Challis et al. [Supernova Search Team Collab.], “Observational evidence from supernovae for an accelerating Universe and a cosmological constant”, Astron. J., 116:3 (1998), 1009–1038 | DOI
[3] C. L. Bennett, M. Halpern, G. Hinshaw et al., “First-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: preliminary maps and basic results”, Astrophys. J. Suppl. Ser., 148:1 (2003), 1–27, arXiv: astro-ph/0302207 | DOI
[4] D. N. Spergel, L. Verde, H. V. Peiris, “First-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: determination of cosmological parameters”, Astrophys. J. Suppl. Ser., 148:1 (2003), 175–194 | DOI
[5] M. Tegmark, M. A. Strauss, M. R. Blanton et al., “Cosmological parameters from SDSS and WMAP”, Phys. Rev. D, 69:10 (2004), 103501, 26 pp. | DOI
[6] P. Astier, J. Guy, N. Regnault1 et al., “The supernova legacy survey: measurement of $\Omega_M$, $\Omega_\Lambda$ and $w$ from the first year data set”, Astron. Astrophys., 447:1 (2006), 31–48 | DOI
[7] A. G. Riess, L.-G. Strolger, S. Casertano et al., “New Hubble Space Telescope discoveries of type Ia Supernovae at $z \ge 1$: narrowing constraints on the early behavior of dark energy”, Astrophys. J., 659:1 (2007), 98–121, arXiv: astro-ph/0611572 | DOI
[8] W. M. Wood-Vasey, G. Miknaitis, C. W. Stubbs et al., “Observational constraints on the nature of dark energy: first cosmological results from the ESSENCE supernova survey”, Astron. J., 666:2 (2007), 694–715 | DOI
[9] T. M. Davis, E. Mortsell, J. Sollerman et al., “Scrutinizing exotic cosmological models using ESSENCE supernova data combined with other cosmological probes”, Astron. J., 666:2 (2007), 716–725 | DOI
[10] M. Kowalski, D. Rubin, G. Aldering et al., “Improved cosmological constraints from new, old, and combined supernova data sets”, Astron. J., 686:2 (2008), 749–778 | DOI
[11] D. N. Spergel, R. Bean, O. Doré et al., “Three-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: implications for cosmology”, Astrophys. J. Suppl. Ser., 170:2 (2007), 377–408 | DOI
[12] E. Komatsu, K. M. Smith, J. Dunkley et al., “Seven-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: cosmological interpretation”, Astrophys. J. Suppl. Ser., 192:2 (2011), 18, 47 pp. | DOI
[13] D. J. Eisentein, I. Zehavi, D. W. Hogg et al., “Detection of the baryon acoustic peak in the large-scale correlation function of SDSS luminous red galaxies”, Astron. J., 633:2 (2005), 560–574 | DOI
[14] W. J. Percival, B. A. Reid, D. J. Eisenstein et al., “Baryon acoustic oscillations in the Sloan Digital Sky Survey Data Release 7 galaxy sample”, Mon. Not. R. Astron. Soc., 401:4 (2010), 2148–2168 | DOI
[15] J. M. Overduin, F. I. Cooperstock, “Evolution of the scale factor with a variable cosmological term”, Phys. Rev. D, 58:4 (1998), 0435506, 23 pp. | DOI
[16] V. Sahni, A. Starobinsky, “The case for a positive cosmological lambda-term”, Internat. J. Modern Phys. D, 9:4 (2000), 373–443, arXiv: astro-ph/9904398 | DOI
[17] S. M. Carroll, “The cosmological constant”, Living Rev. Relativity, 4 (2001), 2001-1, 80 pp. | DOI | MR
[18] S. K. Srivastava, “Future universe with $w-1$ without big smash”, Phys. Lett. B, 619:1–2 (2005), 1–4 | DOI
[19] O. Bertolami, A. A. Sen, S. Sen, P. T. Silva, “Latest supernova data in the framework of the generalized Chaplygin gas model”, Mon. Not. R. Astron. Soc., 353:1 (2004), 329–337 | DOI
[20] M. C. Bento, O. Bertolami, A. A. Sen, “Generalized Chaplygin gas, accelerated expansion, and dark-energy-matter unification”, Phys. Rev. D, 66:4 (2002), 043507, 5 pp. | DOI
[21] N. Bilic, G. B. Tupper, R. Viollier, “Unification of dark matter and dark energy: the inhomogeneous Chaplygin gas”, Phys. Lett. B, 535:1–4 (2002), 17–21 | DOI
[22] P. P. Avelino, L. M. G. Beça, J. P. M. de Carvalho, C. J. A. P. Martins, P. Pinto, “Alternatives to quintessence model building”, Phys. Rev. D, 67:2 (2003), 023511, 8 pp. | DOI
[23] H. Amirhashchi, A. Pradhan, B. Saha, “An interacting two-fluid scenario for dark energy in an FRW Universe”, Chin. Phys. Lett., 28:3 (2011), 039801, 4 pp. | DOI
[24] S. Capozziello, “Curvature quintessence”, Internat. J. Modern Phys. D, 11:4 (2002), 483–492 | DOI
[25] S. M. Carroll, V. Duvvuri, M. Trodden, M. S. Turner, “Is cosmic speed-up due to new gravitational physics?”, Phys. Rev. D, 70:4 (2004), 043528, 5 pp. | DOI
[26] A. D. Dolgov, M. Kawasaki, “Can modified gravity explain accelerated cosmic expansion?”, Phys. Lett. B, 573 (2003), 1–4 | DOI
[27] S. Nojiri, S. D. Odintsov, “The minimal curvature of the universe in modified gravity and conformal anomaly resolution of the instabilities”, Phys. Lett. A, 19:8 (2004), 627–638, arXiv: hep-th/0310045 | DOI | MR
[28] M. C. B. Abdalaa, S. Nojiri, S. D. Odintsov, “Consistent modified gravity: dark energy, acceleration and the absence of cosmic doomsday”, Class. Quantum Grav., 22:5 (2005), L35–L42 | DOI | MR
[29] O. Mena, J. Santiago, J. Weller, “Constraining inverse-curvature gravity with supernovae”, Phys. Rev. Lett., 96:4 (2006), 041103, 4 pp. | DOI
[30] S. M. Carroll, M. Hoffman, M. Trodden, “Can the dark energy equation-of-state parameter $w$ be less than $-1$?”, Phys. Rev. D, 68:2 (2003), 023509, 11 pp. | DOI
[31] R. K. Knop, G. Aldering, R. Amanullah et al. [Supernova Cosmology Collab.], “New constraints on $\Omega_\mathrm M$, $\Omega_{\Lambda}$, and $w$ from an independent set of eleven high-redshift supernovae observed with HST”, Astrophys. J., 598:1 (2003), 102–137, arXiv: astro-ph/0309368 | DOI
[32] G. Hinshaw, J. L. Weiland, R. S. Hill et al., “Five-year Wilkinson Microwave Anisotropy Probe observations: data processing, sky maps, and basic results”, Astrophys. J. Suppl. Ser., 180:2 (2009), 225–245 | DOI
[33] A. A. Usmani, P. P. Ghosh, U. Mukhopadhyay, P. C. Ray, S. Ray, “The dark energy equation of state”, Mon. Not. R. Astron. Soc. Lett., 386:1 (2008), L92–L95 | DOI
[34] U. Mukhopadhyay, P. P. Gosh, S. B. D. Choudhury, “$\Lambda$-CDM universe: a phenomenological approach with many possibilities”, Internat. J. Modern Phys. D, 17:2 (2008), 301–309, arXiv: 0708.0680 | DOI
[35] Ö. Akarsu, C. B. Kilinç, “Bianchi type III models with anisotropic dark energy”, Gen. Rel. Grav., 42:4 (2010), 763–775 | DOI | MR
[36] J. K. Singh, N. K. Sharma, “Bianchi type-II dark energy model in scale covariant theory of gravitation”, Internat. J. Theor. Phys., 53:2 (2014), 461–468 | DOI | MR
[37] C. Brans, R. H. Dicke, “Mach's principle and a relativistic theory of gravitation”, Phys. Rev., 124:3 (1961), 925–935 | DOI
[38] V. B. Johri, K. Desikan, “Cosmological models with constant deceleration parameter in Brans–Dicke theory”, Gen. Rel. Grav., 26:12 (1994), 1217–1232 | DOI | MR
[39] S. Ram, C. P. Singh, “Early cosmological models with bulk viscosity in Brans–Dicke theory”, Astrophys. Space Sci., 254:1 (1997), 143–150 | DOI
[40] G. P. Singh, A. Beesham, “Bulk viscosity and particle creation in Brans–Dicke theory”, Aust. J. Phys., 52:6 (1999), 1039–1049 | DOI
[41] K. S. Adhav, M. R. Ugale, C. B. Kale, M. P. Bhende, “Plane symmetric vacuum Bianchi type-III cosmological model in Brans–Dicke Theory”, Internat. J. Theor. Phys., 48:1 (2009), 178–182 | DOI
[42] D. R. K. Reddy, D. Bharati, G. V. V. Lakshmi, “Kantowski–Sachs bulk viscous string cosmological model in Brans–Dicke theory of gravitation”, Astrophys. Space Sci., 351:1 (2014), 307–311 | DOI
[43] J. K. Singh, N. K. Sharma, “Some Bianchi type-II cosmological models in Brans–Dicke theory”, Astrophys. Space Sci., 327:2 (2010), 293–298 | DOI
[44] J. K. Singh, “Some cosmological models in scalar-tensor theories”, Modern Phys. Lett. A, 25:27 (2010), 2363–2371 | DOI | MR
[45] J. K. Singh, “Bianchi type-V cosmological models in Brans–Dicke theory”, Internat. J. Modern Phys. A, 25:18–19 (2010), 3817–3824 | DOI | MR
[46] J. K. Singh, S. Rani, “The Bianchi type-V dark energy cosmology in self interacting Brans Dicke theory of gravity”, arXiv: 1601.01265
[47] C. B. Collins, S. W. Hawking, “Why is the universe isotropic?”, Astrophys. J., 180 (1973), 317 | DOI | MR
[48] M. S. Berman, “A special law of variation for Hubble's parameter”, Nuovo Cimento B, 74:2 (1983), 182–186 | DOI
[49] E. V. Linder, “The dynamics of quintessence, the quintessence of dynamics”, Gen. Rel. Grav., 40:2–3 (2008), 329–356 | DOI | MR
[50] B. Saha, “Bianchi type-VI anisotropic dark energy model with varying EoS parameter”, Internat. J. Theor. Phys., 52:10 (2013), 3646–3657 | DOI