Mots-clés : spin-fermion model
@article{TMF_2017_193_3_a10,
author = {V. V. Val'kov and D. M. Dzebisashvili},
title = {Dynamical magnetic susceptibility in the~spin-fermion model for cuprate},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {515--529},
year = {2017},
volume = {193},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2017_193_3_a10/}
}
TY - JOUR AU - V. V. Val'kov AU - D. M. Dzebisashvili TI - Dynamical magnetic susceptibility in the spin-fermion model for cuprate JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2017 SP - 515 EP - 529 VL - 193 IS - 3 UR - http://geodesic.mathdoc.fr/item/TMF_2017_193_3_a10/ LA - ru ID - TMF_2017_193_3_a10 ER -
V. V. Val'kov; D. M. Dzebisashvili. Dynamical magnetic susceptibility in the spin-fermion model for cuprate. Teoretičeskaâ i matematičeskaâ fizika, Tome 193 (2017) no. 3, pp. 515-529. http://geodesic.mathdoc.fr/item/TMF_2017_193_3_a10/
[1] J. M. Tranquada, “Neutron scattering studies of antiferromagnetic correlations in cuprates”, Handbook of High-Temperature Superconductivity. Theory and Experiment, eds. J. R. Schrieffer, J. S. Brooks, Springer, New-York, 2007, 257–298 | DOI | MR
[2] H. Shimahara, S. Takada, “Fragility of the antiferromagnetic long-range-order and spin correlation in the two-dimensional $t$–$J$ model”, J. Phys. Soc. Japan, 61:3 (1992), 989–997 | DOI
[3] A. Sherman, M. Schreiber, “Two-dimensional $t$–$J$ model at moderate doping”, Eur. Phys. J. B, 32:2 (2003), 203–214, arXiv: cond-mat/0302356 | DOI
[4] I. Sega, P. Prelovs̆ek, J. Bonc̆a, “Magnetic fluctuations and resonant peak in cuprates: towards a microscopic theory”, Phys. Rev. B, 68:5 (2003), 054524, 6 pp. | DOI
[5] I. Larionov, “Spin dynamics in lightly doped La$_{2-x}$Sr$_x$CuO$_4$: relaxation function within the $t$–$J$ model”, Phys. Rev. B, 69:21 (2004), 214525, 17 pp. | DOI
[6] A. A. Vladimirov, D. Ile, N. M. Plakida, “Dinamicheskaya spinovaya vospriimchivost v $t$–$J$-modeli: metod funktsii pamyati”, TMF, 145:2 (2005), 240–255 | DOI | DOI | MR | Zbl
[7] A. A. Vladimirov, D. Ihle, N. M. Plakida, “Dynamic spin susceptibility of superconducting cuprates: a microscopic theory of the magnetic resonance mode”, Phys. Rev. B, 83:2 (2011), 024411, 13 pp. | DOI
[8] M. V. Eremin, I. M. Shigapov, I. M. Eremin, “Dual features of magnetic susceptibility in superconducting cuprates: a comparison to inelastic neutron scattering”, Eur. Phys. J. B, 85 (2012), 131 | DOI
[9] V. A. Moskalenko, N. M. Plakida, “Dinamicheskaya spinovaya vospriimchivost v modeli Khabbarda”, TMF, 113:1 (1997), 124–138 | DOI | DOI | MR | Zbl
[10] R. Zwanzig, “Memory effects in irreversible thermodynamics”, Phys. Rev., 124:4 (1961), 983–992 | DOI
[11] H. Mori, “Transport, collective motion, and Brownian motion”, Prog. Theor. Phys., 33:3 (1965), 423–455 | DOI | Zbl
[12] H. Mori, “A continued-fraction representation of the time-correlation functions”, Progr. Theor. Phys., 34:3 (1965), 399–416 | DOI | MR
[13] A. V. Mikheenkov, A. F. Barabanov, “Spinovaya vospriimchivost kupratov v ramkakh modeli dvumernogo frustrirovannogo antiferromagnetika. Rol perenormirovok spinovykh fluktuatsii dlya opisaniya neitronnykh eksperimentov”, ZhETF, 132:2 (2007), 392–405
[14] H. Shimahara, S. Takada, “Green's function theory of the two-dimensional Heisenberg model–spin wave in short range order”, J. Phys. Soc. Japan, 60:7 (1991), 2394–2405 | DOI
[15] V. J. Emery, “Theory of high-T$_\mathrm{c}$ superconductivity in oxides”, Phys. Rev. Lett., 58:26 (1987), 2794–2797 | DOI
[16] C. M. Varma, S. Schmitt-Rink, E. Abrahams, “Charge transfer excitations and superconductivity in ‘ionic’ metals”, Solid State Commun., 62:10 (1987), 681–685 | DOI
[17] J. E. Hirsch, “Antiferromagnetism, localization, and pairing in a two-dimensional model for CuO$_2$”, Phys. Rev. Lett., 59:2 (1987), 228–231 | DOI
[18] A. A. Barabanov, L. A. Maksimov, G. Uimin, “Ob elementarnykh vozbuzhdeniyakh v ploskostyakh SuO$_2$”, Pisma v ZhETF, 47:10 (1988), 532–535
[19] J. Zaanen, A. M. Oleś, “Canonical perturbation theory and the two-band model for high-$\mathrm{T}_\mathrm{c}$ superconductors”, Phys. Rev. B, 37:16 (1988), 9423–9438 | DOI
[20] H. Shimahara, “Antiferromagnetic long-range-order and spin waves in the spin-fermion model on the CuO$_2$ lattice”, J. Phys. Soc. Japan, 61:10 (1992), 3708 | DOI
[21] Yu. A. Izyumov, F. A. Kassan-ogly, Yu. N. Skryabin, Polevye metody v teorii ferromagnetizma, Nauka, M., 1974
[22] A. A. Abrikosov, L. P. Gorkov, I. E. Dzyaloshinskii, Metody kvantovoi teorii polya v statisticheskoi fizike, Fizmatgiz, M., 1962 | MR
[23] A. F. Barabanov, L. A. Maksimov, A. V. Mikheenkov, “Spin polaron in the cuprate superconductor: interpretation of the ARPES results”, Spectroscopy of High-T$_c$ Superconductors. A Theoretical View, ed. N. M. Plakida, CRC Press, Boca Raton, 2003
[24] A. F. Barabanov, R. O. Kuzian, L. A. Maksimov, “Spectral function of small spin polaron in two-dimensional spherically symmetric antiferromagnetic state”, Phys. Rev. B, 55:7 (1997), 4015–4018 | DOI
[25] V. V. Valkov, D. M. Dzebisashvili, A. F. Barabanov, “Obobschennaya model reshetki Kondo i ee spin-polyaronnaya realizatsiya proektsionnym metodom dlya kupratov”, TMF, 191:2 (2017), 319–333 | DOI | DOI | MR
[26] R. O. Zaitsev, “Diagrammnaya tekhnika i gazovoe priblizhenie v modeli Khabbarda”, ZhETF, 70:3 (1976), 1100–1111
[27] R. O. Zaitsev, Diagrammnye metody v teorii sverkhprovodimosti i ferromagnetizma, Editorial URSS, M., 2004
[28] V. G. Baryakhtar, V. N. Krivoruchko, D. A. Yablonskii, “Uravnenie Daisona dlya spinovykh funktsii Grina”, TMF, 56:1 (1983), 149–153 | DOI
[29] V. G. Baryakhtar, V. N. Krivoruchko, D. A. Yablonskii, Funktsii Grina v teorii magnetizma, Naukova dumka, Kiev, 1984 | MR
[30] J. Kondo, K. Yamaji, “Green's-function formalism of the one-dimensional Heisenberg spin system”, Prog. Theor. Phys., 47:3 (1972), 807–818 | DOI
[31] V. V. Val'kov, D. M. Dzebisashvili, A. F. Barabanov, “$d$-Wave pairing in an ensemble of spin polaron quasiparticles in the spin-fermion model of the electronic structure of the CuO$_2$ plane”, Phys. Lett. A, 379:5 (2015), 421–426 | DOI
[32] A. A. Barabanov, V. A. Berezovskii, E. Zhasinas, L. A. Maksimov, “O proiskhozhdenii rastyanutoi sedlovoi osobennosti v spektre dyrochnykh vozbuzhdenii v ploskosti CuO$_2$”, ZhETF, 110:4 (1996), 1480–1496
[33] R. O. Kuzian, R. Hayn, A. F. Barabanov, L. A. Maksimov, “Spin-polaron damping in the spin-fermion model for cuprate superconductors”, Phys. Rev. B, 58:10 (1998), 6194–6207 | DOI
[34] V. V. Valkov, D. M. Dzebisashvili, M. M. Korovushkin, A. F. Barabanov, “Ustoichivost sverkhprovodyaschei $d_{x^2-y^2}$-fazy VTSP otnositelno mezhuzelnogo kulonovskogo ottalkivaniya kislorodnykh dyrok”, Pisma v ZhETF, 103:6 (2016), 433–437 | DOI | DOI