A gauged linear formulation for flag-manifold $\sigma$-models
Teoretičeskaâ i matematičeskaâ fizika, Tome 193 (2017) no. 3, pp. 381-400 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We formulate $\sigma$-models of a flag manifold with a zero-curvature representation in the form of a theory of linear "matter fields" interacting with auxiliary gauge fields.
Keywords: $\sigma$-model, integrable model, flag space
Mots-clés : Kähler quotient.
@article{TMF_2017_193_3_a1,
     author = {D. V. Bykov},
     title = {A~gauged linear formulation for flag-manifold $\sigma$-models},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {381--400},
     year = {2017},
     volume = {193},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2017_193_3_a1/}
}
TY  - JOUR
AU  - D. V. Bykov
TI  - A gauged linear formulation for flag-manifold $\sigma$-models
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2017
SP  - 381
EP  - 400
VL  - 193
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2017_193_3_a1/
LA  - ru
ID  - TMF_2017_193_3_a1
ER  - 
%0 Journal Article
%A D. V. Bykov
%T A gauged linear formulation for flag-manifold $\sigma$-models
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2017
%P 381-400
%V 193
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2017_193_3_a1/
%G ru
%F TMF_2017_193_3_a1
D. V. Bykov. A gauged linear formulation for flag-manifold $\sigma$-models. Teoretičeskaâ i matematičeskaâ fizika, Tome 193 (2017) no. 3, pp. 381-400. http://geodesic.mathdoc.fr/item/TMF_2017_193_3_a1/

[1] D. Bykov, “Complex structures and zero-curvature equations for $\sigma$-models”, Phys. Lett. B, 760 (2016), 341–344, arXiv: 1605.01093 | DOI

[2] D. Bykov, “Integrable properties of $\sigma$-models with non-symmetric target spaces”, Nucl. Phys. B, 894 (2015), 254–267 | DOI | MR | Zbl

[3] D. Bykov, “Classical solutions of a flag manifold $\sigma$-model”, Nucl. Phys. B, 902 (2016), 292–301 | DOI | MR | Zbl

[4] K. Pohlmeyer, “Integrable Hamiltonian systems and interactions through quadratic constraints”, Commun. Math. Phys., 46:3 (1976), 207–221 | DOI | MR | Zbl

[5] A. D'Adda, P. Di Vecchia, M. Lüscher, “Confinement and chiral symmetry breaking in CP${}^{n-1}$ models with quarks”, Nucl. Phys. B, 152:1 (1979), 125–144 | DOI

[6] V. E. Zakharov, A. V. Mikhailov, “Relyativistski-invariantnye dvumernye modeli teorii polya, integriruemye metodom obratnoi zadachi”, ZhETF, 74:6 (1978), 1953–1973 | MR

[7] H. Eichenherr, M. Forger, “On the dual symmetry of the non-linear sigma models”, Nucl. Phys. B, 155:2 (1979), 381–393 | DOI | MR

[8] D. Bykov, The Kähler metric of a blow-up, arXiv: 1307.2816

[9] E. Cremmer, J. Scherk, “The supersymmetric nonlinear $\sigma$-model in four-dimensions and its coupling to supergravity”, Phys. Lett. B, 74:4–5 (1978), 341–343 | DOI

[10] A. D'Adda, M. Lüscher, P. Di Vecchia, “A $1/n$ expandable series of non-linear $\sigma$ models with instantons”, Nucl. Phys. B, 146:1 (1978), 63–76 | DOI | MR

[11] V. Ginzburg, “Lectures on Nakajima's quiver varieties”, Geometric methods in representation theory. I (Grenoble, France, June 16 – July 4, 2008), Séminaires et Congrès, 24, pt. 1, ed. M. Brion, Soc. Math. France, Paris, 2012, 145–219 | MR | Zbl

[12] E. Abdalla, M. C. B. Abdalla, M. Gomes, “Anomaly cancellations in the supersymmetric CP$^{(n-1)}$ model”, Phys. Rev. D, 25:2 (1982), 452–460 | DOI