Hamiltonian operators in differential algebras
Teoretičeskaâ i matematičeskaâ fizika, Tome 193 (2017) no. 3, pp. 369-380 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We develop a previously proposed algebraic technique for a Hamiltonian approach to evolution systems of partial differential equations including constrained systems and propose a defining system of equations (suitable for computer calculations) characterizing the Hamiltonian operators of a given form. We demonstrate the technique with a simple example.
Keywords: differential algebra, Jacobi identity, Hamiltonian operator, Hamiltonian evolution system.
Mots-clés : Lie–Poisson structure
@article{TMF_2017_193_3_a0,
     author = {V. V. Zharinov},
     title = {Hamiltonian operators in differential algebras},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {369--380},
     year = {2017},
     volume = {193},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2017_193_3_a0/}
}
TY  - JOUR
AU  - V. V. Zharinov
TI  - Hamiltonian operators in differential algebras
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2017
SP  - 369
EP  - 380
VL  - 193
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2017_193_3_a0/
LA  - ru
ID  - TMF_2017_193_3_a0
ER  - 
%0 Journal Article
%A V. V. Zharinov
%T Hamiltonian operators in differential algebras
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2017
%P 369-380
%V 193
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2017_193_3_a0/
%G ru
%F TMF_2017_193_3_a0
V. V. Zharinov. Hamiltonian operators in differential algebras. Teoretičeskaâ i matematičeskaâ fizika, Tome 193 (2017) no. 3, pp. 369-380. http://geodesic.mathdoc.fr/item/TMF_2017_193_3_a0/

[1] V. V. Zharinov, “Struktury Li–Puassona nad differentsialnymi algebrami”, TMF, 192:3 (2017), 459–472 | DOI

[2] P. Olver, Prilozheniya grupp Li k differentsialnym uravneniyam, Mir, M., 1989 | MR | MR | Zbl

[3] V. V. Zharinov, Lecture Notes on Geometrical Aspects of Partial Differential Equations, World Sci., Singapore, 1992 | MR

[4] N. Kh. Ibragimov, Gruppy preobrazovanii v matematicheskoi fizike, Nauka, M., 1983 | MR

[5] V. V. Zharinov, “Evolyutsionnye sistemy so svyazyami v vide uslovii nulevoi divergentsii”, TMF, 163:1 (2010), 3–16 | DOI | Zbl

[6] V. V. Zharinov, “O preobrazovanii Beklunda”, TMF, 189:3 (2016), 323–334 | DOI | Zbl

[7] I. M. Gelfand, I. Ya. Dorfman, “Gamiltonovy operatory i svyazannye s nimi algebraicheskie struktury”, Funkts. analiz i ego pril., 13:4 (1979), 13–30 | MR | Zbl

[8] B. A. Dubrovin, S. P. Novikov, “Gidrodinamika slabo deformirovannykh solitonnykh reshetok. Differentsialnaya geometriya i gamiltonova teoriya”, UMN, 44:6(270) (1989), 29–98 | Zbl

[9] M. O. Katanaev, “Vektornye polya Killinga i odnorodnaya i izotropnaya vselennaya”, UFN, 186:7 (2016), 763–775 | DOI

[10] G. A. Alekseev, “Collision of strong gravitational and electromagnetic waves in the expanding universe”, Phys. Rev. D, 93:6 (2016), 061501, 6 pp. | DOI | MR

[11] A. P. Chugainova, V. A. Shargatov, “Ustoichivost struktury razryvov, opisyvaemykh obobschennym uravneniem Kortevega–d Vriza–Byurgersa”, Zh. vychisl. matem. i matem. fiz., 56:2 (2016), 259–274 | DOI | Zbl

[12] A. G. Kulikovskii, A. P. Chugainova, “Issledovanie razryvov v resheniyakh uravnenii uprugoplasticheskoi sredy Prandtlya–Reissa”, Zh. vychisl. matem. i matem. fiz., 56:4 (2016), 650–663 | DOI | Zbl

[13] V. A. Vasilev, “Lokalnye lakuny Petrovskogo vblizi parabolicheskikh osobennostei volnovykh frontov strogo giperbolicheskikh uravnenii v chastnykh proizvodnykh”, Matem. sb., 207:10 (2016), 4–27 | DOI

[14] V. V. Kozlov, “Ob uravneniyakh gidrodinamicheskogo tipa”, PMM, 80:3 (2016), 294–303 | DOI

[15] V. M. Bukhshtaber, “Polinomialnye dinamicheskie sistemy i uravnenie Kortevega–de Friza”, Tr. MIAN, 294 (2016), 191–215 | Zbl

[16] V. P. Pavlov, V. M. Sergeev, “Gidrodinamika i termodinamika kak edinaya polevaya teoriya”, Tr. MIAN, 294 (2016), 237–247 | Zbl

[17] A. G. Kulikovskii, A. P. Chugainova, “Avtomodelnaya zadacha o volnakh v uprugoplasticheskoi srede Prandtlya–Reissa”, Tr. MIAN, 295 (2016), 195–205 | Zbl

[18] A. T. Ilichev, A. P. Chugainova, “Teoriya spektralnoi ustoichivosti geteroklinicheskikh reshenii uravneniya Kortevega–de Friza–Byurgersa s proizvolnym potentsialom”, Tr. MIAN, 295 (2016), 163–173 | Zbl

[19] G. A. Alekseev, “Integriruemye i neintegriruemye struktury v uravneniyakh Einshteina–Maksvella c abelevoi gruppoi izometrii G2G2”, Tr. MIAN, 295 (2016), 7–33 | Zbl