@article{TMF_2017_193_2_a9,
author = {F. Ali and T. Feroze},
title = {Cylindrically symmetric gravitational-wavelike space{\textendash}times},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {343--355},
year = {2017},
volume = {193},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2017_193_2_a9/}
}
F. Ali; T. Feroze. Cylindrically symmetric gravitational-wavelike space–times. Teoretičeskaâ i matematičeskaâ fizika, Tome 193 (2017) no. 2, pp. 343-355. http://geodesic.mathdoc.fr/item/TMF_2017_193_2_a9/
[1] W. H. Press, K. S. Thorne, “Gravitational-wave astronomy”, Ann. Rev. Astron. Astrophys., 10 (1972), 335–374 ; У. Пресс, К. Торн, “Гравитационно-волновая астрономия”, УФН, 110:569–606 (1973) | DOI | DOI
[2] R. H. Price, K. S. Thorne, “Nonradial pulsation of general relativistic stellar models. II. Properties of the gravitational waves”, Astrophys. J., 155 (1969), 163–182 | DOI
[3] K. S. Thorne, “Gravitational radiation damping”, Phys. Rev. Lett., 21:5 (1968), 320–323 | DOI
[4] K. S. Thorne, “Sources of gravitational waves”, Proc. Roy. Soc. London A, 368:1732 (1979), 9–10 | DOI
[5] K. S. Thorne, “Gravitational-wave research: current status and future prospects”, Rev. Modern Phys., 52:2 (1980), 285–298 | DOI
[6] E. L. Hill, “Hamilton's principle and the conservation theorems of mathematical physics”, Rev. Modern Phys., 23:3 (1951), 253–260 | DOI | MR | Zbl
[7] E. Noether, “Invariante Variationsprobleme”, Nachr. Ges. Wiss. Göttingen, Math.-Phys. Kl., 2 (1918), 235–275 | Zbl
[8] A. Trautman, “Conservation laws in general relativity”, Gravitation: An Introduction to Current Research, ed. L. Witten, John Wiley and Sons, New York, 1962, 169–198 | MR
[9] A. Einstein, N. Rosen, “On gravitational waves”, J. Franklin Inst., 223:1 (1937), 43–54 | DOI | MR | Zbl
[10] F. Ali, T. Feroze, “Classification of plane symmetric static space–times according to their Noether's symmetries”, Internat. J. Theor. Phys., 52:9 (2013), 3329–3342 | DOI | MR | Zbl
[11] F. Ali, T. Feroze, S. Ali, “Polnaya klassifikatsiya sfericheski-simmetrichnykh staticheskikh prostranstv-vremen s pomoschyu simmetrii Neter”, TMF, 184:1 (2015), 92–105 | DOI | DOI | MR
[12] P. Olver, Prilozhenie grupp Li k differentsialnym uravneniyam, Mir, M., 1989 | DOI | MR | MR | Zbl | Zbl
[13] F. Ali, “Conservation laws of cylindrically symmetric vacuum solution of Einstein field equations”, Appl. Math. Sci., 8:94 (2014), 4697–4702 | DOI
[14] U. Camci, A. Yildirim, “Lie and Noether symmetries in some classes of pp-wave spacetime”, Phys. Scr., 89 (2014), 084003, 8 pp. | DOI
[15] U. Camci, “Symmetries of geodesic motion in Gödel-type spacetimes”, JCAP, 2014:07 (2014), 002, 20 pp. | DOI | MR
[16] Y. Kucukakca, U. Camci, “Noether gauge symmetry for $f(R)$ gravity in Palatini formalism”, Astrophys. Space Sci., 338:1 (2012), 211–216 | DOI | Zbl
[17] S. Capozziello, R. de Ritis, P. Scudellaro, “Nöther symmetries in quantum cosmology”, Internat. J. Modern Phys. D, 3:3 (1994), 609–621 | DOI | MR
[18] S. Capozziello, M. De Laurentis, S. D. Odintsov, “Hamiltonian dynamics and Noether symmetries in extended gravity cosmology”, Eur. Phys. J. C, 72 (2012), 2068, 21 pp. | DOI
[19] F. Ali, T. Feroze, “Approximate Noether symmetries from geodetic Lagrangian for plane symmetric spacetimes”, Internat. J. Geom. Modern Phys., 12:10 (2015), 9 pp. | DOI | MR | Zbl
[20] N. H. Ibragimov, Elementary Lie Group Analysis and Ordinary Differential Equations, Wiley Series in Mathematical Methods in Practice, 4, John Wiley and Sons, Chichester, 1999 | MR
[21] G. Ünal, “Approximate generalized symmetries, normal forms and approximate first integrals”, Phys. Lett. A, 269:1 (2000), 13–30 | DOI | Zbl
[22] G. Ünal, C. M. Khalique, G. F. Alişverişçi, “Approximate first integrals of a chaotic Hamiltonian system”, Quaest. Math., 30:4 (2009), 483–497 | DOI | MR
[23] G. Ünal, C. M. Khalique, “Approximate conserved quantities of conservative dynamical systems in $R^3$”, Quaest. Math., 28:3 (2005), 305–315 | DOI | MR | Zbl
[24] T. Levi-Civita, “IX: L'analogo del potenziale logaritmico”, Rom. Acc. L. Rend. (5), 28:1 (1919), 101–109 | Zbl
[25] V. D. Zakharov, Gravitatsionnye volny v teorii tyagoteniya Einshteina, Nauka, M., 1972 | MR | MR | Zbl
[26] A. Jawad, F. Ali, S. M. Umair, G. Abbas, “Dynamics of particles around time conformal Schwarzschild black hole”, Eur. Phys. J. C, 76 (2016), 586, 12 pp. | DOI
[27] D. Kramer, H. Stephani, E. Herlt, M. A. H. MacCallum, Exact Solution of Einstein's Field Equations, Cambridge Monographs on Mathematical Physics, 6, Cambridge Univ. Press, Cambridge, 1980 | MR
[28] F. Ali, T. Feroze, “Complete classification of cylindrically symmetric static spacetime and the corresponding conservation laws”, Mathematics, 4:3 (2016), 50, 15 pp. | DOI | Zbl