Cylindrically symmetric gravitational-wavelike space–times
Teoretičeskaâ i matematičeskaâ fizika, Tome 193 (2017) no. 2, pp. 343-355 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We present Noether symmetries of a geodetic Lagrangian for a time-conformal cylindrically symmetric space–time. We introduce a time-conformal factor in the general cylindrically symmetric space–time to make it nonstatic and then find approximate Noether symmetries of the action of the corresponding Lagrangian. Taking the perturbation up to the first order, we find all Lagrangians for cylindrically symmetric space–times for which approximate Noether symmetries exist.
Keywords: Noether symmetry equation, Noether theorem, first integral, Einstein field equation, gravitational wave.
@article{TMF_2017_193_2_a9,
     author = {F. Ali and T. Feroze},
     title = {Cylindrically symmetric gravitational-wavelike space{\textendash}times},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {343--355},
     year = {2017},
     volume = {193},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2017_193_2_a9/}
}
TY  - JOUR
AU  - F. Ali
AU  - T. Feroze
TI  - Cylindrically symmetric gravitational-wavelike space–times
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2017
SP  - 343
EP  - 355
VL  - 193
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2017_193_2_a9/
LA  - ru
ID  - TMF_2017_193_2_a9
ER  - 
%0 Journal Article
%A F. Ali
%A T. Feroze
%T Cylindrically symmetric gravitational-wavelike space–times
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2017
%P 343-355
%V 193
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2017_193_2_a9/
%G ru
%F TMF_2017_193_2_a9
F. Ali; T. Feroze. Cylindrically symmetric gravitational-wavelike space–times. Teoretičeskaâ i matematičeskaâ fizika, Tome 193 (2017) no. 2, pp. 343-355. http://geodesic.mathdoc.fr/item/TMF_2017_193_2_a9/

[1] W. H. Press, K. S. Thorne, “Gravitational-wave astronomy”, Ann. Rev. Astron. Astrophys., 10 (1972), 335–374 ; У. Пресс, К. Торн, “Гравитационно-волновая астрономия”, УФН, 110:569–606 (1973) | DOI | DOI

[2] R. H. Price, K. S. Thorne, “Nonradial pulsation of general relativistic stellar models. II. Properties of the gravitational waves”, Astrophys. J., 155 (1969), 163–182 | DOI

[3] K. S. Thorne, “Gravitational radiation damping”, Phys. Rev. Lett., 21:5 (1968), 320–323 | DOI

[4] K. S. Thorne, “Sources of gravitational waves”, Proc. Roy. Soc. London A, 368:1732 (1979), 9–10 | DOI

[5] K. S. Thorne, “Gravitational-wave research: current status and future prospects”, Rev. Modern Phys., 52:2 (1980), 285–298 | DOI

[6] E. L. Hill, “Hamilton's principle and the conservation theorems of mathematical physics”, Rev. Modern Phys., 23:3 (1951), 253–260 | DOI | MR | Zbl

[7] E. Noether, “Invariante Variationsprobleme”, Nachr. Ges. Wiss. Göttingen, Math.-Phys. Kl., 2 (1918), 235–275 | Zbl

[8] A. Trautman, “Conservation laws in general relativity”, Gravitation: An Introduction to Current Research, ed. L. Witten, John Wiley and Sons, New York, 1962, 169–198 | MR

[9] A. Einstein, N. Rosen, “On gravitational waves”, J. Franklin Inst., 223:1 (1937), 43–54 | DOI | MR | Zbl

[10] F. Ali, T. Feroze, “Classification of plane symmetric static space–times according to their Noether's symmetries”, Internat. J. Theor. Phys., 52:9 (2013), 3329–3342 | DOI | MR | Zbl

[11] F. Ali, T. Feroze, S. Ali, “Polnaya klassifikatsiya sfericheski-simmetrichnykh staticheskikh prostranstv-vremen s pomoschyu simmetrii Neter”, TMF, 184:1 (2015), 92–105 | DOI | DOI | MR

[12] P. Olver, Prilozhenie grupp Li k differentsialnym uravneniyam, Mir, M., 1989 | DOI | MR | MR | Zbl | Zbl

[13] F. Ali, “Conservation laws of cylindrically symmetric vacuum solution of Einstein field equations”, Appl. Math. Sci., 8:94 (2014), 4697–4702 | DOI

[14] U. Camci, A. Yildirim, “Lie and Noether symmetries in some classes of pp-wave spacetime”, Phys. Scr., 89 (2014), 084003, 8 pp. | DOI

[15] U. Camci, “Symmetries of geodesic motion in Gödel-type spacetimes”, JCAP, 2014:07 (2014), 002, 20 pp. | DOI | MR

[16] Y. Kucukakca, U. Camci, “Noether gauge symmetry for $f(R)$ gravity in Palatini formalism”, Astrophys. Space Sci., 338:1 (2012), 211–216 | DOI | Zbl

[17] S. Capozziello, R. de Ritis, P. Scudellaro, “Nöther symmetries in quantum cosmology”, Internat. J. Modern Phys. D, 3:3 (1994), 609–621 | DOI | MR

[18] S. Capozziello, M. De Laurentis, S. D. Odintsov, “Hamiltonian dynamics and Noether symmetries in extended gravity cosmology”, Eur. Phys. J. C, 72 (2012), 2068, 21 pp. | DOI

[19] F. Ali, T. Feroze, “Approximate Noether symmetries from geodetic Lagrangian for plane symmetric spacetimes”, Internat. J. Geom. Modern Phys., 12:10 (2015), 9 pp. | DOI | MR | Zbl

[20] N. H. Ibragimov, Elementary Lie Group Analysis and Ordinary Differential Equations, Wiley Series in Mathematical Methods in Practice, 4, John Wiley and Sons, Chichester, 1999 | MR

[21] G. Ünal, “Approximate generalized symmetries, normal forms and approximate first integrals”, Phys. Lett. A, 269:1 (2000), 13–30 | DOI | Zbl

[22] G. Ünal, C. M. Khalique, G. F. Alişverişçi, “Approximate first integrals of a chaotic Hamiltonian system”, Quaest. Math., 30:4 (2009), 483–497 | DOI | MR

[23] G. Ünal, C. M. Khalique, “Approximate conserved quantities of conservative dynamical systems in $R^3$”, Quaest. Math., 28:3 (2005), 305–315 | DOI | MR | Zbl

[24] T. Levi-Civita, “IX: L'analogo del potenziale logaritmico”, Rom. Acc. L. Rend. (5), 28:1 (1919), 101–109 | Zbl

[25] V. D. Zakharov, Gravitatsionnye volny v teorii tyagoteniya Einshteina, Nauka, M., 1972 | MR | MR | Zbl

[26] A. Jawad, F. Ali, S. M. Umair, G. Abbas, “Dynamics of particles around time conformal Schwarzschild black hole”, Eur. Phys. J. C, 76 (2016), 586, 12 pp. | DOI

[27] D. Kramer, H. Stephani, E. Herlt, M. A. H. MacCallum, Exact Solution of Einstein's Field Equations, Cambridge Monographs on Mathematical Physics, 6, Cambridge Univ. Press, Cambridge, 1980 | MR

[28] F. Ali, T. Feroze, “Complete classification of cylindrically symmetric static spacetime and the corresponding conservation laws”, Mathematics, 4:3 (2016), 50, 15 pp. | DOI | Zbl