Construction of a set of $p$-adic distributions
Teoretičeskaâ i matematičeskaâ fizika, Tome 193 (2017) no. 2, pp. 333-342 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Adapting some methods for real-valued Gibbs measures on Cayley trees to the $p$-adic case, we construct several $p$-adic distributions on the set $\mathbb Z_p$ of $p$-adic integers. In addition, we give conditions under which these $p$-adic distributions become $p$-adic measures (i.e., bounded distributions).
Keywords: Cayley tree, $p$-adic number, $p$-adic measure.
Mots-clés : $p$-adic distribution
@article{TMF_2017_193_2_a8,
     author = {U. A. Rozikov and Z. T. Tugyonov},
     title = {Construction of a~set of $p$-adic distributions},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {333--342},
     year = {2017},
     volume = {193},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2017_193_2_a8/}
}
TY  - JOUR
AU  - U. A. Rozikov
AU  - Z. T. Tugyonov
TI  - Construction of a set of $p$-adic distributions
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2017
SP  - 333
EP  - 342
VL  - 193
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2017_193_2_a8/
LA  - ru
ID  - TMF_2017_193_2_a8
ER  - 
%0 Journal Article
%A U. A. Rozikov
%A Z. T. Tugyonov
%T Construction of a set of $p$-adic distributions
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2017
%P 333-342
%V 193
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2017_193_2_a8/
%G ru
%F TMF_2017_193_2_a8
U. A. Rozikov; Z. T. Tugyonov. Construction of a set of $p$-adic distributions. Teoretičeskaâ i matematičeskaâ fizika, Tome 193 (2017) no. 2, pp. 333-342. http://geodesic.mathdoc.fr/item/TMF_2017_193_2_a8/

[1] N. Koblits, $p$-Adicheskie chisla, $p$-adicheskii analiz i dzeta-funktsii, Mir, M., 1981 | MR | MR | Zbl | Zbl

[2] G. Gras, Mesures $p$-Adiques, Théorie des nombres, Année, Publ. Math. Fac. Sci. Besançon, Univ. Franche-Comté, Besançon, 1991/1992 | MR

[3] E. G. Beltrametti, G. Cassinelli, “Quantum mechanics and $p$-adic numbers”, Found. Phys., 2 (1972), 1–7 | DOI | MR

[4] A. N. Shiryaev, Veroyatnost, Izd-vo MTsNMO, M., 2004 | DOI

[5] N. N. Ganikhodzhaev, F. M. Mukhamedov, U. A. Rozikov, “Fazovye perekhody v modeli Izinga na $\mathbb Z$ nad polem $p$-adicheskikh chisel”, Uzb. matem. zhurn., 1998, no. 4, 23–29 | MR

[6] G. Gandolfo, U. A. Rozikov, J. Ruiz, “On $p$-adic Gibbs measures for hard core model on a Cayley tree”, Markov Process. Related Fields, 18:4 (2012), 701–720 | MR | Zbl

[7] M. Khamraev, F. M. Mukhamedov, U. A. Rozikov, “On the uniqueness of Gibbs measures for $p$-adic non homogeneous $\lambda$-model on the Cayley tree”, Lett. Math. Phys., 70:1 (2004), 17–28 | DOI | MR | Zbl

[8] A. Yu. Khrennikov, F. M. Mukhamedov, J. F. F. Mendes, “On $p$-adic Gibbs measures of the countable state Potts model on the Cayley tree”, Nonlinearity, 20:12 (2007), 2923–2937 | DOI | MR | Zbl

[9] A. Yu. Khrennikov, $p$-Adic Valued Distributions in Mathematical Physics, Mathematics and Its Applications, 309, Kluwer, Dordrecht, 1994 | MR

[10] A. Yu. Khrennikov, S. Yamada, F. van Rooij, “The measure-theoretical approach to $p$-adic probability theory”, Ann. Math. Blaise Pascal, 6:1 (1999), 21–32 | DOI | MR | Zbl

[11] F. M. Mukhamedov, “On the existence of generalized Gibbs measures for the one-dimensional $p$-adic countable state Potts model”, Tr. MIAN, 265 (2009), 177–188 | DOI | MR | Zbl

[12] F. M. Mukhamedov, U. A. Rozikov, “On Gibbs measures of $p$-adic Potts model on the Cayley tree”, Indag. Math. (N. S.), 15:1 (2004), 85–99 | DOI | MR

[13] F. M. Mukhamedov, U. A. Rozikov, “On inhomogeneous $p$-adic Potts model on a Cayley tree”, Infin. Dimens. Anal. Quantum Probab. Relat. Top, 8:2 (2005), 277–290 | DOI | MR | Zbl

[14] F. M. Mukhamedov, U. A. Rozikov, J. F. F. Mendes, “On phase transitions for $p$-adic Potts model with competing interactions on a Cayley tree”, $p$-Adic Mathematical Physics (Belgrade, Serbia and Montenegro, 15–21 September, 2005), AIP Conference Proceedings, 826, eds. A. Yu. Khrennikov, Z. Rakic, I. V. Volovich, Amer. Inst. Phys., Melville, NY, 2006, 140–150 | DOI | MR | Zbl

[15] F. M. Mukhamedov, M. Saburov M., O. N. Khakimov, “On $p$-adic Ising–Vannimenus model on an arbitrary order Cayley tree”, J. Stat. Mech., 2015 (2015), P05032, 26 pp. | DOI | MR

[16] F. M. Mukhamedov, “On dynamical systems and phase transitions for $q+1$-state $p$-adic Potts model on the Cayley tree”, Math. Phys. Anal. Geom., 16:1 (2013), 49–87 | DOI | MR

[17] W. H. Schikhof, Ultrametric Calculus. An introduction to $p$-adic analysis, Cambridge Studies in Advanced Mathematics, 4, Cambridge Univ. Press, Cambridge, 1984 | MR

[18] B. C. Vladimirov, I. V. Volovich, E. I. Zelenov, $p$-adicheskii analiz i matematicheskaya fizika, Nauka, M., 1994 | MR | MR | Zbl

[19] A. Yu. Khrennikov, “$p$-Adic valued probability measures”, Indag. Math. (N. S.), 7:3 (1996), 311–330 | DOI | MR | Zbl

[20] A. C. M. van Rooij, Non-Archimedean Functional Analysis, Monographs and Textbooks in Pure and Applied Mathematics, 51, M. Dekker, New York, 1978 | MR

[21] Kh.-O. Georgi, Gibbsovskie mery i fazovye perekhody, M., Mir, 1992

[22] P. M. Bleher, N. N. Ganikhodjaev, “On pure phases of the Ising model on the Bethe lattice”, Theory Probab. Appl., 35:2 (1990), 216–227 | DOI | MR

[23] U. A. Rozikov, Gibbs measures on Cayley Trees, World Sci. Publ., Singapore, 2013 | MR

[24] R. Bekster, Tochno reshaemye modeli v statisticheskoi mekhanike, Mir, M., 1985 | MR

[25] Z. T. Tugyonov, “On periodic p-adic distributions”, $p$-Adic Numbers Ultrametric Anal. Appl., 5:3 (2013), 218–225 | DOI | MR | Zbl

[26] Z. T. Tugenov, “Periodichnost raspredeleniya Bernulli”, Uzb. matem. zhurn., 2 (2013), 107–111 | MR

[27] Zohid T. Tugyonov, “Non uniqueness of $p$-adic Gibbs distribution for the Ising model on the lattice $Z^d$”, Zhurn. SFU. Ser. Matem. i fiz., 9:1 (2016), 123–127 | DOI