A concise review of pseudobosons, pseudofermions, and their
Teoretičeskaâ i matematičeskaâ fizika, Tome 193 (2017) no. 2, pp. 315-332 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We review some basic definitions and a few facts recently established for $\mathcal{D}$-pseudobosons and pseudofermions. We also discuss an extended version of pseudofermions based on biorthogonal bases in a finite-dimensional Hilbert space and describe some examples in detail.
Mots-clés : pseudoboson, pseudofermion.
@article{TMF_2017_193_2_a7,
     author = {F. Bagarello},
     title = {A~concise review of pseudobosons, pseudofermions, and their},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {315--332},
     year = {2017},
     volume = {193},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2017_193_2_a7/}
}
TY  - JOUR
AU  - F. Bagarello
TI  - A concise review of pseudobosons, pseudofermions, and their
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2017
SP  - 315
EP  - 332
VL  - 193
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2017_193_2_a7/
LA  - ru
ID  - TMF_2017_193_2_a7
ER  - 
%0 Journal Article
%A F. Bagarello
%T A concise review of pseudobosons, pseudofermions, and their
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2017
%P 315-332
%V 193
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2017_193_2_a7/
%G ru
%F TMF_2017_193_2_a7
F. Bagarello. A concise review of pseudobosons, pseudofermions, and their. Teoretičeskaâ i matematičeskaâ fizika, Tome 193 (2017) no. 2, pp. 315-332. http://geodesic.mathdoc.fr/item/TMF_2017_193_2_a7/

[1] F. Bagarello, “Deformed canonical (anti-)commutation relations and non-self-adjoint Hamiltonians”, Non-Selfadjoint Operators in Quantum Physics. Mathematical Aspects, eds. F. Bagarello, J. P. Gazeau, F. H. Szafraniec, M. Znojil, John Wiley and Sons, Hoboken, NJ, 2015, 121–188 | MR | Zbl

[2] C. Bender, “Making sense of non-Hermitian Hamiltonians”, Rep. Progr. Phys., 70:6 (2007), 947–1018 | DOI | MR

[3] A. Mostafazadeh, “Pseudo-Hermitian representation of quantum mechanics”, Internat. J. Geom. Methods Mod. Phys., 7:7 (2010), 1191–1306 | DOI | MR | Zbl

[4] D. A. Trifonov, “Nonlinear fermions and coherent states”, J. Phys. A, 45:24 (2012), 244037, 14 pp. | DOI | MR

[5] Y. Maleki, “Para-Grassmannian coherent and squeezed states for pseudo-Hermitian $q$-oscillator and their entanglement”, SIGMA, 7 (2011), 084, 20 pp. | DOI | MR | Zbl

[6] W. Rudin, Real and Complex Analysis, McGraw Hill, New York, 1974 | MR

[7] F. Bagarello, “$kq$-Representation for pseudo-bosons, and completeness of bi-coherent states”, J. Math. Anal. Appl., 450:1 (2017), 631–646 | DOI

[8] A. Messia, Kvantovaya mekhanika, v. 1, Nauka, M., 1979 | MR | MR | Zbl

[9] O. Christensen, An Introduction to Frames and Riesz Bases, Birkhäuser, Boston, 2003 | DOI | MR

[10] F. Bagarello, “Appearances of pseudo-bosons from Black–Scholes equation”, J. Math. Phys., 57:4 (2016), 043504, 12 pp. | DOI | MR | Zbl

[11] F. Bagarello, M. Lattuca, R. Passante, L. Rizzuto, S. Spagnolo, “Non-Hermitian Hamiltonian for a modulated Jaynes–Cummings model with $\mathcal{P\!T}$ symmetry”, Phys. Rev. A, 91:4 (2015), 042134, 8 pp. | DOI | MR

[12] F. Bagarello, M. G. Gianfreda, “$\mathscr D$-deformed and SUSY-deformed graphene: first results”, Non-Hermitian Hamiltonians in Quantum Physics, Selected Contributions from the 15th International Conference on Non-Hermitian Hamiltonians in Quantum Physics (Palermo, Italy, 18–23 May, 2015), Springer Proceedings in Physics, 184, eds. F. Bagarello, R. Passante, C. Trapani, Springer, Berlin, 2016, 97–122 | DOI

[13] S. T. Ali, F. Bagarello, J. P. Gazeau, “${\mathcal D}$-pseudo-bosons, complex Hermite polynomials, and integral quantization”, SIGMA, 11 (2015), 078, 23 pp. | MR | Zbl

[14] F. Bagarello, “Intertwining operators for non-self-adjoint Hamiltonians and bicoherent states”, J. Math. Phys., 57:10 (2016), 103501, 19 pp. | DOI | MR | Zbl

[15] C. M. Bender, H. F. Jones, “Interactions of Hermitian and non-Hermitian Hamiltonians”, J. Phys. A: Math. Theor., 41:24 (2008), 244006, 8 pp. | DOI | MR | Zbl

[16] J.-Q. Li, Q. Li, Y.-G. Miao, “Investigation of $PT$-symmetric Hamiltonian systems from an alternative point of view”, Commun. Theor. Phys., 58:4 (2012), 497–503 | DOI | MR

[17] F. Bagarello, M. Lattuca, “${\mathcal D}$ pseudo-bosons in quantum models”, Phys. Lett. A, 377:44 (2013), 3199–3204 | DOI | MR | Zbl

[18] E. B. Davies, Linear Operators and Their Spectra, Cambridge Studies in Advanced Mathematics, 106, Cambridge Univ. Press, Cambridge, 2007 | DOI | MR

[19] F. Bagarello, “Linear pseudo-fermions”, J. Phys. A: Math. Theor., 45:44 (2012), 444002, 12 pp. | DOI | MR | Zbl

[20] O. Cherbal, M. Drir, M. Maamache, D. A. Trifonov, “Fermionic coherent states for pseudo-Hermitian two-level systems”, J. Phys. A: Math. Theor., 40:8 (2007), 1835–1844 | DOI | MR | Zbl

[21] F. Bagarello, F. Gargano, “Model pseudofermionic systems: connections with exceptional points”, Phys. Rev. A, 89:3 (2014), 032113, 7 pp. | DOI

[22] A. Das, L. Greenwood, “An alternative construction of the positive inner product for pseudo-Hermitian Hamiltonians: examples”, J. Math. Phys., 51:4 (2010), 042103, 11 pp. | DOI | MR | Zbl

[23] I. Gilary, A. A. Mailybaev, N. Moiseyev, “Time-asymmetric quantum-state-exchange mechanism”, Phys. Rev. A, 88:1 (2013), 010102, 5 pp. | DOI

[24] A. Mostafazadeh, S. Özçelik, “Explicit realization of pseudo-Hermitian and quasi-Hermitian quantum mechanics for two-level systems”, Turk. J. Phys., 30 (2006), 437–443

[25] S. T. Ali, F. Bagarello, J. P. Gazeau, “Extended pseudo-fermions from non commutative bosons”, J. Math. Phys., 54:7 (2013), 073516, 13 pp. | DOI | MR | Zbl

[26] F. Bagarello, “Finite-dimensional pseudo-bosons: a non-Hermitian version of the truncated harmonic oscillator”, Ann. H. Poincaré, submitted

[27] H. A. Buchdahl, “Concerning a kind of truncated quantized linear harmonic oscillator”, Am. J. Phys., 35:3 (1967), 210–218 | DOI