Multipoint scatterers with bound states at zero energy
Teoretičeskaâ i matematičeskaâ fizika, Tome 193 (2017) no. 2, pp. 309-314 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We study multipoint scatterers with bound states at zero energy in three-dimensional space. We construct examples of such scatterers with multiple zero eigenvalues or with strong multipole localization of zero-energy bound states.
Keywords: Schrödinger equation, multipoint scatterer, bound state, zero energy, localization.
@article{TMF_2017_193_2_a6,
     author = {P. G. Grinevich and R. G. Novikov},
     title = {Multipoint scatterers with bound states at zero energy},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {309--314},
     year = {2017},
     volume = {193},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2017_193_2_a6/}
}
TY  - JOUR
AU  - P. G. Grinevich
AU  - R. G. Novikov
TI  - Multipoint scatterers with bound states at zero energy
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2017
SP  - 309
EP  - 314
VL  - 193
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2017_193_2_a6/
LA  - ru
ID  - TMF_2017_193_2_a6
ER  - 
%0 Journal Article
%A P. G. Grinevich
%A R. G. Novikov
%T Multipoint scatterers with bound states at zero energy
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2017
%P 309-314
%V 193
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2017_193_2_a6/
%G ru
%F TMF_2017_193_2_a6
P. G. Grinevich; R. G. Novikov. Multipoint scatterers with bound states at zero energy. Teoretičeskaâ i matematičeskaâ fizika, Tome 193 (2017) no. 2, pp. 309-314. http://geodesic.mathdoc.fr/item/TMF_2017_193_2_a6/

[1] H. Bethe, R. Peierls, “Quantum theory of the diplon”, Proc. Roy. Soc. London Ser. A, 148:863 (1935), 146–156 | DOI | Zbl

[2] E. Fermi, “Sul moto dei neutroni nelle sostanze idrogenate”, Ric. Sci., 7:2 (1936), 13–52

[3] Ya. B. Zeldovich, “Rasseyanie singulyarnym potentsialom v teorii vozmuschenii i v impulsnom predstavlenii”, ZhETF, 38:3 (1960), 819–824 | MR

[4] F. A. Berezin, L. D. Faddeev, “Zamechanie ob uravnenii Shredingera s singulyarnym potentsialom”, Dokl. AN SSSR, 137:5 (1961), 1011–1014 | MR | Zbl

[5] S. Albeverio, F. Gesztesy, R. Høegh-Krohn, H. Holden, Solvable Models in Quantum Mechanics, Texts and Monographs in Physics, Springer, New York, 1988 | DOI | MR

[6] G. Dell'Antonio, R. Figari, A. Teta, “A brief review on point interactions”, Inverse Problems and Imaging (Martina Franca, Italy, September 15–21, 2002), Lecture Notes in Mathematics, 1943, ed. L. L. Bonilla, Springer, Berlin, 2008, 171–189 | DOI | MR | Zbl

[7] N. P. Badalyan, V. A. Burov, S. A. Morozov, O. D. Rumyantseva, “Rasseyanie na akusticheskikh granichnykh rasseivatelyakh s malymi volnovymi razmerami i ikh vosstanovlenie”, Akust. zhurn., 55:1 (2009), 3–10 | DOI

[8] P. G. Grinevich, R. G. Novikov, “Faddeev eigenfunctions for multipoint potentials”, Euras. J. Math. Computer Appl., 1:2 (2013), 76–91, arXiv: 1110.3157

[9] I. A. Taimanov, S. P. Tsarev, “Dvumernye operatory Shredingera s bystro ubyvayuschim ratsionalnym potentsialom i mnogomernym $L_2$-yadrom”, UMN, 62:3(375) (2007), 217–218 | DOI | DOI | MR | Zbl