Keywords: one-dimensional hydrogen atom, vacuum polarization, nonperturbative effects for $Z>Z_{\mathrm{cr}}$.
@article{TMF_2017_193_2_a5,
author = {Yu. S. Voronina and A. S. Davydov and K. A. Sveshnikov},
title = {Vacuum effects for a~one-dimensional {\textquotedblleft}hydrogen atom" with $Z>Z_{\mathrm{cr}}$},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {276--308},
year = {2017},
volume = {193},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2017_193_2_a5/}
}
TY - JOUR
AU - Yu. S. Voronina
AU - A. S. Davydov
AU - K. A. Sveshnikov
TI - Vacuum effects for a one-dimensional “hydrogen atom" with $Z>Z_{\mathrm{cr}}$
JO - Teoretičeskaâ i matematičeskaâ fizika
PY - 2017
SP - 276
EP - 308
VL - 193
IS - 2
UR - http://geodesic.mathdoc.fr/item/TMF_2017_193_2_a5/
LA - ru
ID - TMF_2017_193_2_a5
ER -
%0 Journal Article
%A Yu. S. Voronina
%A A. S. Davydov
%A K. A. Sveshnikov
%T Vacuum effects for a one-dimensional “hydrogen atom" with $Z>Z_{\mathrm{cr}}$
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2017
%P 276-308
%V 193
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2017_193_2_a5/
%G ru
%F TMF_2017_193_2_a5
Yu. S. Voronina; A. S. Davydov; K. A. Sveshnikov. Vacuum effects for a one-dimensional “hydrogen atom" with $Z>Z_{\mathrm{cr}}$. Teoretičeskaâ i matematičeskaâ fizika, Tome 193 (2017) no. 2, pp. 276-308. http://geodesic.mathdoc.fr/item/TMF_2017_193_2_a5/
[1] R. Loudon, “One-dimensional hydrogen atom”, Am. J. Phys., 27:9 (1959), 649–655 | DOI
[2] R. J. Elliott, R. Loudon, “Theory of the absorption edge in semiconductors in a high magnetic field”, J. Phys. Chem. Solids, 15:3–4 (1960), 196–207 | DOI | MR | Zbl
[3] C. M. Care, “One dimensional hydrogen atom with a repulsive core”, J. Phys. C: Solid State Phys., 5:14 (1972), 1799–1805 | DOI
[4] M. W. Cole, “Properties of image-potential-induced surface states of insulators”, Phys. Rev. B, 2:10 (1970), 4239–4252 | DOI
[5] M. M. Nieto, “Electrons above a helium surface and the one-dimensional Rydberg atom”, Phys. Rev. A, 61:3 (2000), 034901, 4 pp. | DOI
[6] N. B. Delone, V. P. Krainov, D. L. Shepelyanskii, “Vysokovozbuzhdennyi atom v elektromagnitnom pole”, UFN, 140:3 (1983), 355–392 | DOI | DOI
[7] R. V. Jensen, S. M. Susskind, M. M. Sanders, “Chaotic ionization of highly excited hydrogen atoms: Comparison of classical and quantum theory with experiment”, Phys. Rep., 201:1 (1991), 1–56 | DOI
[8] U.-L. Pen, T. F. Jiang, “Strong-field effects of the one-dimensional hydrogen atom in momentum space”, Phys. Rev. A, 46:7 (1992), 4297–4305 | DOI
[9] A. López-Castillo, C. R. de Oliveira, “Classical ionization for the aperiodic driven hydrogen atom”, Chaos, Solitons and Fractals, 15:5 (2003), 859–869 | DOI | Zbl
[10] F. H. L. Essler, F. Gebhard, E. Jeckelmann, “Excitons in one-dimensional Mott insulators”, Phys. Rev. B, 64:12 (2001), 125119, 15 pp. | DOI
[11] F. Wang, Y. Wu, M. S. Hybertsen, T. F. Heinz, “Auger recombination of excitons in one-dimensional systems”, Phys. Rev. B, 73:24 (2006), 245424, 5 pp. | DOI
[12] V. Canuto, D. C. Kelly, “Hydrogen atom in intense magnetic field”, Astrophys. Space Sci., 17:2 (1972), 277–291 | DOI
[13] H. Friedrich, H. Wintgen, “The hydrogen atom in a uniform magnetic field – an example of chaos”, Phys. Rep., 183:2 (1989), 37–79 | DOI | MR
[14] X. Guan, B. Li, K. T. Taylor, “Strong parallel magnetic field effects on the hydrogen molecular ion”, J. Phys. B, 36:17 (2003), 3569–3590 | DOI
[15] H. Ruder, G. Wunner, H. Herold, F. Geyer, Atoms in Strong Magnetic Fields: Quantum Mechanical Treatment and Applications in Astrophysics and Quantum Chaos, Springer, Berlin, 2012
[16] R. Barbieri, “Hydrogen atom in superstrong magnetic fields: Relativistic treatment”, Nucl. Phys. A, 161:1 (1971), 1–11 | DOI
[17] V. P. Krainov, “Vodorodopodobnyi atom v sverkhsilnom magnitnom pole”, ZhETF, 64:3 (1973), 800–803
[18] A. E. Shabad, V. V. Usov, “Positronium collapse and the maximum magnetic field in pure QED”, Phys. Rev. Lett., 96:18 (2006), 180401, 4 pp. | DOI
[19] A. E. Shabad, V. V. Usov, “Bethe–Salpeter approach for relativistic positronium in a strong magnetic field”, Phys. Rev. D, 73:12 (2006), 125021, 16 pp. | DOI
[20] A. E. Shabad, V. V. Usov, “Electric field of a pointlike charge in a strong magnetic field and ground state of a hydrogenlike atom”, Phys. Rev. D, 77:2 (2008), 025001, 20 pp. | DOI
[21] V. N. Oraevskii, A. I. Rez, V. B. Semikoz, “Spontannoe rozhdenie pozitronov kulonovskim tsentrom v odnorodnom magnitnom pole”, ZhETF, 72:3 (1977), 820–833
[22] B. M. Karnakov, V. S. Popov, “Atom vodoroda v sverkhsilnom magnitnom pole i effekt Zeldovicha”, ZhETF, 124:5 (2003), 996–1022
[23] M. I. Vysotskii, S. I. Godunov, “Kriticheskii zaryad v sverkhsilnom magnitnom pole”, UFN, 184:2 (2014), 206–210 | DOI | DOI
[24] J. Reinhardt, W. Greiner, “Quantum electrodynamics of strong fields”, Rep. Progr. Phys., 40:3 (1977), 219–295 | DOI
[25] W. Greiner, B. Müller, J. Rafelski, Quantum electrodynamics of strong fields, Springer, Berlin, Heidelberg, 1985
[26] G. Plunien, B. Müller, W. Greiner, “The Casimir effect”, Phys. Rep., 134:2–3 (1986), 87–193 | DOI | MR
[27] V. M. Kuleshov, V. D. Mur, N. B. Narozhnyi, A. M. Fedotov, Yu. E. Lozovik, V. S. Popov, “Kulonovskaya zadacha s zaryadom yadra $Z>Z_{\mathrm{cr}}$”, UFN, 185:8 (2015), 845 | DOI | DOI
[28] J. Rafelski, J. Kirsch, B. Müller, J. Reinhardt, W. Greiner, “Probing QED vacuum with heavy ions”, arXiv: 1604.08690
[29] E. H. Wichmann, N. M. Kroll, “Vacuum polarization in a strong Coulomb field”, Phys. Rev., 101:2 (1956), 843–859 | DOI | MR
[30] M. Gyulassy, “Higher order vacuum polarization for finite radius nuclei”, Nucl. Phys. A, 244:3 (1975), 497–525 | DOI
[31] L. S. Brown, R. N. Cahn, L. D. McLerran, “Vacuum polarization in a strong Coulomb field. Induced point charge”, Phys. Rev. D, 12:2 (1975), 581–595 | DOI
[32] A. R. Neghabian, “Vacuum polarization for an electron in a strong Coulomb field”, Phys. Rev. A, 27:5 (1983), 2311–2320 | DOI
[33] W. Greiner, J. Reinhardt, Quantum Electrodynamics, Springer, Berlin, 2012 | DOI | MR
[34] P. J. Mohr, G. Plunien, G. Soff, “QED corrections in heavy atoms”, Phys. Rep. C, 293:5–6 (1998), 227–369 | DOI
[35] T. C. Adorno, D. M. Gitman, A. E. Shabad, “Coulomb field in a constant electromagnetic background”, Phys. Rev. D, 93:12 (2016), 125031, 19 pp. | DOI | MR
[36] K. A. Sveshnikov, D. I Khomovskii, “Chastitsy Shredingera i Diraka v kvaziodnomernykh sistemakh s “kulonovskim” vzaimodeistviem”, TMF, 173:2 (2012), 293–313 | DOI | DOI
[37] G. Beitmen, A. Erdeii, Vysshie transtsendentnye funktsii, v. 1, Gipergeometricheskaya funktsiya. Funktsii Lezhandra, Nauka, M., 1973 | MR
[38] U. Fano, “Effects of configuration interaction on intensities and phase shifts”, Phys. Rev., 124:6 (1961), 1866–1878 | DOI
[39] R. Rajaraman, Solitons and Instantons, North-Holland, Amsterdam, 1982 | MR
[40] K. Sveshnikov, “Dirac sea correction to the topological soliton mass”, Phys. Lett. B, 255:2 (1991), 255–260 | DOI
[41] A. Chodos, R. L. Jaffe, K. Johnson, C. B. Thorn, V. F. Weisskopf, “New extended model of hadrons”, Phys. Rev. D, 9:12 (1974), 3471–3495 | DOI | MR
[42] F. Olver (ed.), NIST Handbook of Mathematical Functions, Cambridge Univ. Press, Cambridge, 2010
[43] V. A. Yerokhin, P. Indelicato, V. M. Shabaev, “Two-loop QED corrections with closed fermion loops”, Phys. Rev. A, 77:6 (2008), 062510, 12 pp. | DOI
[44] K. Itsikson, Zh.-B. Zyuber, Kvantovaya teoriya polya, v. 2, Mir, M., 1984 | MR | MR