Mots-clés : superpolynomial
@article{TMF_2017_193_2_a4,
author = {Ya. A. Kononov and A. Yu. Morozov},
title = {Rectangular superpolynomials for the~figure-eight knot $4_1$},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {256--275},
year = {2017},
volume = {193},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2017_193_2_a4/}
}
Ya. A. Kononov; A. Yu. Morozov. Rectangular superpolynomials for the figure-eight knot $4_1$. Teoretičeskaâ i matematičeskaâ fizika, Tome 193 (2017) no. 2, pp. 256-275. http://geodesic.mathdoc.fr/item/TMF_2017_193_2_a4/
[1] S.-S. Chern, J. Simons, “Characteristic forms and geometric invariants”, Ann. Math., 99:1 (1974), 48–69 ; E. Witten, “Quantum field theory and the Jones polynomial”, Commun. Math. Phys., 121:3 (1989), 351–399 | DOI | MR | Zbl | DOI | MR | Zbl
[2] J. W. Alexander, “Topological invariants of knots and links”, Trans. Amer. Math. Soc., 30:2 (1928) ; J. H. Conway, “An enumeration of knots and links, and some of their algebraic properties”, Computational Problems in Abstract Algebra (Science Research Council Atlas Computer Laboratory, Oxford, 29 August – 2 September, 1967), ed. J. Leech, Pergamon Press, Oxford, New York, 1970, 329–358 ; V. F. R. Jones, “Index for subfactors”, Invent. Math., 72:1 (1983), 1–25 ; “A polynomial invariant for knots via von Neumann algebras”, Bull. Amer. Math. Soc. (N. S.), 12:1 (1985), 103–111 ; “Hecke algebra representations of braid groups and link polynomials”, Ann. Math., 126:2 (1987), 335–388 ; L. H. Kauffman, “State models and the Jones polynomial”, Topology, 26:3 (1987), 395–407 ; P. Freyd, D. Yetter, J. Hoste, W. B. R. Lickorish, K. Millett, A. Ocneanu, “A new polynomial invariant of knots and links”, Bull. Amer. Math. Soc. (N. S.), 12:2 (1985), 239–246 ; J. H. Przytycki, K. P. Traczyk, “Invariants of links of Conway type”, Kobe J. Math., 4:2 (1987), 115–139 ; A. Morozov, A. Smirnov, “Towards the proof of AGT relations with the help of the generalized Jack polynomials”, Lett. Math. Phys., 104:5 (2014), 585–612, arXiv: 1307.2576 | DOI | MR | Zbl | MR | Zbl | DOI | MR | Zbl | DOI | MR | Zbl | DOI | MR | Zbl | DOI | MR | Zbl | DOI | MR | Zbl | MR | Zbl | DOI | MR | Zbl
[3] R. Gopakumar, C. Vafa, “Topological gravity as large $N$ topological gauge theory”, Adv. Theor. Math. Phys., 2:2 (1998), 413–442, arXiv: ; M-Theory and Topological Strings–I, arXiv: ; M-Theory and topological strings-II, arXiv: ; “On the gauge theory/geometry correspondence”, Adv. Theor. Math. Phys., 3:5 (1999), 1415–1443, arXiv: ; H. Ooguri, C. Vafa, “Knot invariants and topological strings”, Nucl. Phys. B, 577:3 (2000), 419–438, arXiv: ; S. Gukov, A. Schwarz, C. Vafa, “Khovanov–Rozansky homology and topological strings”, Lett. Math. Phys., 74:1 (2005), 53–74, arXiv: ; M. Dedushenko, E. Witten, “Some details on the Gopakumar–Vafa and Ooguri–Vafa formulas”, Adv. Theor. Math. Phys., 20:1 (2016), 1–133, arXiv: hep-th/9802016hep-th/9809187hep-th/9812127hep-th/9811131hep-th/9912123hep-th/04122431411.7108 | DOI | MR | Zbl | DOI | MR | Zbl | DOI | Zbl | DOI | MR | Zbl | DOI | MR | Zbl
[4] M. Khovanov, “A categorification of the Jones polynomial”, Duke Math. J., 101:3 (2000), 359–426, arXiv: math/9908171 | DOI | MR | Zbl
[5] M. Khovanov, L. Rozansky, “Matrix factorizations and link homology”, Fund. Math., 199:1 (2008), 1–91, arXiv: ; “Virtual crossings, convolutions and a categorification of the $\mathrm{SO}(2N)$ Kauffman polynomial”, J. Gökova Geom. Topol., 1 (2007), 116–214, arXiv: ; N. Carqueville, D. Murfet, “Computing Khovanov–Rozansky homology and defect fusion”, Algebr. Geom. Topol., 14:1 (2014), 489–537, arXiv: math/0401268math/07013331108.1081 | DOI | MR | Zbl | MR | Zbl | DOI | MR | Zbl
[6] A. Yu. Morozov, “Suschestvuyut li $p$-adicheskie invarianty uzlov?”, TMF, 187:1 (2016), 3–11, arXiv: 1509.04928 | DOI | DOI | Zbl
[7] E. Gorsky, S. Gukov, M. Stosic, Quadruply-graded colored homology of knots, arXiv: 1304.3481
[8] S. B. Artamonov, A. D. Mironov, A. Yu. Morozov, “Ierarkhiya differentsialov i dopolnitelnaya graduirovka polinomov uzlov”, TMF, 179:2 (2014), 147–188, arXiv: 1306.5682 | DOI | DOI | MR
[9] H. Nakajima, “More lectures on Hilbert schemes of points on surfaces”, Development of Moduli Theory – Kyoto 2013 (Kyoto, Japan, June 11–21, 2013), Advanced Studies in Pure Mathematics, 69, Math. Soc. Japan, Tokyo, 2016, 173–205 ; A. Okounkov, Lectures on K-theoretic computations in enumerative geometry, arXiv: ; N. Nekrasov, A. Okounkov, “Membranes and sheaves”, Algebr. Geom., 3:3 (2016), 320–369, arXiv: ; E. Carlsson, N. Nekrasov, A. Okounkov, “Five dimensional gauge theories and vertex operators”, Mosc. Math. J., 14:1 (2014), 39–61, arXiv: ; E. Carlsson, A. Okounkov, “Exts and vertex operators”, Duke Math. J., 161:9 (2012), 1797–1815, arXiv: 1512.073631404.23231308.24650801.2565 | MR | Zbl | DOI | MR | Zbl | MR | Zbl | MR | Zbl
[10] J. Ding, K. Iohara, “Generalization and deformation of Drinfeld quantum affine algebras”, Lett. Math. Phys., 41:2 (1997), 181–193, arXiv: ; K. Miki, “A $(q,y)$ analog of the $W_{1+\infty}$ algebra”, J. Math. Phys., 48:12 (2007), 123520, 35 pp. ; B. Feigin, E. Feigin, M. Jimbo, T. Miwa, E. Mukhin, “Quantum continuous $\mathfrak{gl}_{\infty}$: Semi-infinite construction of representations”, Kyoto J. Math., 51:2 (2011), 337–364, arXiv: ; “Quantum continuous $\mathfrak{gl}_{\infty}$: Tensor products of Fock modules and $W_n$ characters”, 51:2 (2011), 365–392, arXiv: ; A. Mironov, A. Morozov, Sh. Shakirov, A. Smirnov, “Proving AGT conjecture as HS duality: extension to five dimensions”, Nucl. Phys. B, 855:1 (2012), 128–151, arXiv: ; H. Awata, B. Feigin, J. Shiraishi, “Quantum algebraic approach to refined topological vertex”, JHEP, 03 (2012), 041, 34 pp., arXiv: ; D. Maulik, A. Okounkov, Quantum groups and quantum cohomology, arXiv: ; N. Nekrasov, V. Pestun, S. Shatashvili, Quantum geometry and quiver gauge theories, arXiv: ; M. Bershtein, O. Foda, “AGT, Burge pairs and minimal models”, JHEP, 06 (2014), 177, 26 pp., arXiv: ; V. Belavin, O. Foda, R. Santachiara, “AGT, $N$-Burge partitions and $W_N$ minimal models”, JHEP, 10 (2015), 073, 36 pp., arXiv: ; A. Morozov, Y. Zenkevich, “Decomposing Nekrasov decomposition”, JHEP, 02 (2016), 098, 44 pp., arXiv: ; J.-E. Bourgine, Y. Matsuo, H. Zhang, “Holomorphic field realization of $\mathrm{SH}^c$ and quantum geometry of quiver gauge theories”, JHEP, 04 (2016), 167, 38 pp., arXiv: ; N. Nekrasov, “BPS/CFT correspondence: non-perturbative Dyson–Schwinger equations and $qq$-characters”, JHEP, 03 (2016), 181, 70 pp., arXiv: ; BPS/CFT correspondence II: Instantons at crossroads, moduli and compactness theorem, arXiv: ; T. Kimura, V. Pestun, Quiver W-algebras, arXiv: ; Quiver elliptic W-algebras, arXiv: ; A. Mironov, A. Morozov, Y. Zenkevich, “Spectral duality in elliptic systems, six-dimensional gauge theories and topological strings”, JHEP, 05 (2016), 121, 43 pp., arXiv: ; “Ding–Iohara–Miki symmetry of network matrix models”, Phys. Lett. B, 762:10 (2016), 196–208, arXiv: ; H. Awata, H. Kanno, T. Matsumoto, A. Mironov, A. Morozov, An. Morozov, Yu. Ohkubo, Y. Zenkevich, “Explicit examples of DIM constraints for network matrix models”, JHEP, 07 (2016), 103, 67 pp., arXiv: ; “Toric Calabi–Yau threefolds as quantum integrable systems. R-matrix and RTT relations”, JHEP, 10 (2016), 047, 48 pp., arXiv: ; A. Nedelin, F. Nieri, M. Zabzine, “$q$-Virasoro modular double and 3d partition functions”, Commun. Math. Phys., 353:3 (2017), 1059–1102, arXiv: ; J.-E. Bourgine, M. Fukuda, Y. Matsuo, H. Zhang, R.-D. Zhu, “Coherent states in quantum $\mathcal W_{1+\infty}^c$ algebra and $qq$-character for 5d Super Yang–Mills”, Prog. Theor. Exp. Phys., 2016:12, 123B05, 41 pp., arXiv: q-alg/96080021002.31001002.31131105.09481112.60741211.12871312.66891404.70751507.035401510.018961512.024921512.053881608.072721512.085331608.046511603.003041603.054671604.083661608.053511605.070291606.08020 | DOI | MR | Zbl | DOI | MR | Zbl | DOI | MR | Zbl | DOI | MR | Zbl | DOI | MR | Zbl | DOI | MR | DOI | MR | Zbl | DOI | MR | DOI | MR | DOI | DOI | DOI | MR | DOI | MR | DOI | MR | DOI | MR | DOI | MR | Zbl | DOI | MR
[11] N. M. Dunfield, S. Gukov, J. Rasmussen, “The superpolynomial for knot homologies”, Experiment. Math., 15:2 (2006), 129–159, arXiv: math/0505662 | DOI | MR | Zbl
[12] M. Aganagic, Sh. Shakirov, Knot homology from refined Chern–Simons theory, arXiv: ; “Refined Chern–Simons theory and knot homology”, String-Math 2011 (University of Pennsylvania, Philadelphia, PA, June 6–11, 2011), Proceedings of Symposia in Pure Mathematics, 85, eds. J. Block, J. Distler, R. Donagi, E. Sharpe, AMS, Providence, RI, 2012, 3–31, arXiv: ; Refined Chern–Simons theory and topological string, arXiv: 1105.51171202.24891210.2733 | DOI | MR
[13] P. Dunin-Barkowski, A. Mironov, A. Morozov, A. Sleptsov, A. Smirnov, “Superpolynomials for torus knots from evolution induced by cut-and-join operators”, JHEP, 03 (2013), 021, 85 pp., arXiv: 1106.4305 | DOI | MR
[14] I. Cherednik, “Jones polynomials of torus knots via DAHA”, Int. Math. Res. Not., 2013:23 (2013), 5366–5425, arXiv: 1111.6195 | DOI | MR | Zbl
[15] A. Mironov, A. Morozov, Sh. Shakirov, A. Sleptsov, “Interplay between MacDonald and Hall–Littlewood expansions of extended torus superpolynomials”, JHEP, 05 (2012), 70, 11 pp., arXiv: 1201.3339 | DOI | MR
[16] A. Yu. Morozov, “Zagadki $\beta$-deformatsii”, TMF, 173:1 (2012), 104–126, arXiv: 1201.4595 | DOI | DOI | Zbl
[17] H. Itoyama, A. Mironov, A. Morozov, An. Morozov, “HOMFLY and superpolynomials for figure eight knot in all symmetric and antisymmetric representations”, JHEP, 07 (2012), 131, 20 pp., arXiv: 1203.5978 | DOI | MR
[18] H. Fuji, S. Gukov, P. Sułkovski, “Super-A-polynomial for knots and BPS states”, Nucl. Phys. B, 867:2 (2013), 506–546, arXiv: 1205.1515 | DOI | Zbl
[19] Ant. Morozov, “Special colored superpolynomials and their representation-dependence”, JHEP, 12 (2012), 116, 7 pp., arXiv: 1208.3544 | DOI | MR
[20] S. Nawata, P. Ramadevi, Zodinmawia, X. Sun, “Super-A-polynomials for twist knots”, JHEP, 11 (2012), 157, 38 pp., arXiv: 1209.1409 | DOI | MR
[21] H. Fuji, P. Sułkowski, “Super-A-polynomial”, String-Math 2012 (Hausdorff Center for Mathematics, Universität Bonn, Bonn, July 16–21, 2012), Proceedings of Symposia in Pure Mathematics, 90, eds. R. Donagi, S. Katz, A. Klemm, D. R. Morrison, AMS, Providence, RI, 2015, 277–304, arXiv: 1303.3709 | DOI | MR
[22] S. Nawata, P. Ramadevi, Zodinmawia, “Colored Kauffman homology and Super-A-polynomials”, JHEP, 01 (2014), 126, 69 pp., arXiv: 1310.2240 | DOI | MR
[23] A. Mironov, A. Morozov, A. Sleptsov, A. Smirnov, “On genus expansion of superpolynomials”, Nucl. Phys. B, 889 (2014), 757–777, arXiv: 1310.7622 | DOI | MR | Zbl
[24] Yu. Berest, P. Samuelson, “Double affine Hecke algebras and generalized Jones polynomials”, Compositio Mathematica, 152:7 (2016), 1333–1384, arXiv: 1402.6032 | DOI | MR | Zbl
[25] I. Cherednik, I. Danilenko, “DAHA and iterated torus knots”, Algebr. Geom. Topol., 16:2 (2016), 843–898, arXiv: 1408.4348 | DOI | MR | Zbl
[26] S. Arthamonov, Sh. Shakirov, Refined Chern–Simons theory in genus two, arXiv: 1504.02620
[27] E. Witten, Two lectures on gauge theory and Khovanov homology, arXiv: 1603.03854
[28] S. Gukov, S. Nawata, I. Saberi, M. Stosic, P. Sułkowski, “Sequencing BPS spectra”, JHEP, 03 (2016), 004, 160 pp., arXiv: 1512.07883 | DOI | MR
[29] S. Nawata, A. Oblomkov, “Lectures on knot homology”, Physics and Mathematics of Link Homology (Centre de Recherches Mathématiques, Université de Montreal, Montreal, QC, June 24 – July 5, 2013), eds. S. Gukov, M. Khovanov, J. Walcher, AMS, Providence, RI, 2016, 137-177, arXiv: 1510.01795 | MR
[30] D. Bar-Natan, “On Khovanov's categorification of the Jones polynomial”, Algebr. Geom. Topol., 2:1 (2002), 337–370, arXiv: ; V. Dolotin, A. Morozov, “Introduction to Khovanov homologies. III. A new and simple tensor-algebra construction of Khovanov–Rozansky invariants”, Nucl. Phys. B, 878 (2014), 12–81, arXiv: ; A. Morozov, And. Morozov, A. Popolitov, “On matrix-model approach to simplified Khovanov–Rozansky calculus”, Phys. Lett. B, 749 (2015), 309–325, arXiv: ; А. Ю. Морозов, А. А. Морозов, А. В. Пополитов, “Матричные модели и размерности в вершинах гиперкубов”, ТМФ, 192:1 (2017), 115–163 math/02010431308.57591506.07516 | DOI | MR | Zbl | DOI | MR | Zbl | DOI | Zbl | DOI | DOI | MR
[31] A. Anokhina, A. Morozov, “Towards $\mathcal R$-matrix construction of Khovanov–Rozansky polynomials. I. Primary $T$-deformation of HOMFLY”, JHEP, 07 (2014), 063, 180 pp., arXiv: 1403.8087 | DOI | MR
[32] N. Yu. Reshetikhin, V. G. Turaev, “Ribbon graphs and their invariants derived from quantum groups”, Commun. Math. Phys., 127:1 (1990), 1–26 ; E. Guadagnini, M. Martellini, M. Mintchev, “Chern–Simons field theory and quantum groups”, Quantum Groups, Proceedings of the 8th International Workshop on Mathematical Physics (Clausthal, Germany, July 19–26, 1989), Lecture Notes in Physics, 370, eds. H. D. Doebner, J. D. Hennig, World Sci., Singapore, 1990, 307–317 ; “Chern–Simons holonomies and the appearance of quantum groups”, Phys. Lett. B, 235:3–4 (1990), 275–281 ; V. G. Turaev, O. Ya. Viro, “State sum invariants of 3-manifolds and quantum $6j$-symbols”, Topology, 31:4 (1992), 865–902 ; A. Morozov, A. Smirnov, “Chern–Simons theory in the temporal gauge and knot invariants through the universal quantum $R$-matrix”, Nucl. Phys. B, 835:3 (2010), 284–313, arXiv: ; A. Smirnov, Notes on Chern–Simons theory in the temporal gauge, arXiv: 1001.20030910.5011 | DOI | MR | Zbl | DOI | MR | Zbl | DOI | MR | DOI | MR | Zbl | DOI | MR | Zbl
[33] R. K. Kaul, T. R. Govindarajan, “Three-dimensional Chern–Simons theory as a theory of knots and links”, Nucl. Phys. B, 380:1–2 (1992), 293–333, arXiv: ; “Three-dimensional Chern–Simons theory as a theory of knots and links: (II). Multicoloured links”, 393:1–2 (1993), 392–412 ; P. Rama Devi, T. R. Govindarajan, R. K. Kaul, “Three-dimensional Chern–Simons theory as a theory of knots and links. (III). Compact semi-simple group”, Nucl. Phys. B, 402:1–2 (1993), 548–566, arXiv: ; “Knot invariants from rational conformal field theories”, Nucl. Phys. B, 422:1–2 (1994), 291–306, arXiv: ; “Representations of composite braids and invariants for mutant knots and links in Chern–Simons field theories”, Modern Phys. Lett. A, 10:22 (1995), 1635–1658, arXiv: ; P. Ramadevi, T. Sarkar, “On link invariants and topological string amplitudes”, Nucl. Phys. B, 600:3 (2001), 487–511, arXiv: ; Zodinmawia, P. Ramadevi, “$SU(N)$ quantum Racah coefficients and non-torus links”, Nucl. Phys. B, 870:1 (2013), 205–242, arXiv: ; Reformulated invariants for non-torus knots and links, arXiv: ; S. Nawata, P. Ramadevi, Zodinmawia, “Colored HOMFLY polynomials from Chern–Simons theory”, J. Knot Theory Ramifications, 22:13 (2013), 1350078, 58 pp., arXiv: hep-th/9111063hep-th/9212110hep-th/9312215hep-th/9412084 hep-th/00091881107.39181209.13461302.5144 | DOI | MR | Zbl | DOI | Zbl | DOI | MR | Zbl | DOI | MR | Zbl | DOI | MR | Zbl | DOI | MR | Zbl | DOI | MR | Zbl | DOI | MR | Zbl
[34] A. Mironov, A. Morozov, And. Morozov, “Character expansion for HOMFLY polynomials I. Integrability and difference equations”, Strings, Gauge Fields, and the Geometry Behind (The Legacy of Maximilian Kreuzer), eds. A. Rebhan, L. Katzarkov, J. Knapp, R. Rashkov, E. Scheidegger, World Sci., Singapore, 2013, 101–118, arXiv: ; “Character expansion for HOMFLY polynomials. II. Fundamental representation. Up to five strands in braid”, JHEP, 03 (2012), 034, 33 pp., arXiv: ; S. Nawata, P. Ramadevi, V. K. Singh, Colored HOMFLY polynomials that distinguish mutant knots, arXiv: ; A. Mironov, A. Morozov, An. Morozov, P. Ramadevi, V. Kumar Singh, A. Sleptsov, “Colored HOMFLY polynomials of knots presented as double fat diagrams”, JHEP, 07 (2015), 109, 33 pp., arXiv: ; “Tabulating knot polynomials for arborescent knots”, J. Phys. A: Math. Theor., 50:8 (2017), 085201, 22 pp., arXiv: ; A. Mironov, A. Morozov, “Towards effective topological field theory for knots”, Nucl. Phys. B, 899 (2015), 395–413, arXiv: 1112.57541112.26541504.003641504.003711601.041991506.00339 | MR | DOI | MR | DOI | MR | DOI | MR | Zbl | DOI | MR | Zbl
[35] L. H. Kauffman, “State models and the Jones polynomial”, Topology, 26:3 (1987), 395–407 ; L. H. Kauffman, P. Vogel, “Link polynomials and a graphical calculus”, J. Knot Theory Ramifications, 1:1 (1992), 59–104 | DOI | MR | Zbl | DOI | MR | Zbl
[36] P. Vogel, The universal Lie algebra, 1999 ; “Algebraic structures on modules of diagrams”, J. Pure Appl. Algebra, 215:6 (2011), 1292–1339 ; P. Deligne, “La série exceptionnelle de groupes de Lie”, C. R. Acad. Sci. Paris. Sér. I, 322:4 (1996), 321–326 ; A. Cohen, R. de Man, “Computational evidence for Deligne's conjecture regarding exceptional Lie groups”, C. R. Acad. Sci. Paris. Sér. I, 322:5 (1996), 427–432 ; J. M. Landsberg, L. Manivel, “Series of Lie groups”, Michigan Math. J., 52:2 (2004), 453–479, arXiv: ; Adv. Math., 171:1 (2002), 59–85 http://www.math.jussieu.fr/<nobr>$\sim$</nobr>vogel/A299.ps.gzmath.AG/0203241 | DOI | MR | Zbl | MR | Zbl | MR | Zbl | DOI | MR | Zbl | DOI | MR | Zbl
[37] A. Mironov, R. Mkrtchyan, A. Morozov, “On universal knot polynomials”, JHEP, 02 (2016), 078, 34 pp., arXiv: 1510.05884 | DOI | MR
[38] D. Galakhov, D. Melnikov, A. Mironov, A. Morozov, A. Sleptsov, “Colored knot polynomials for arbitrary pretzel knots and links”, Phys. Lett. B, 743 (2015), 71–74, arXiv: 1412.2616 | DOI | MR | Zbl
[39] A. Mironov, A. Morozov, And. Morozov, “Evolution method and ‘differential hierarchy’ of colored knot polynomials”, Nonlinear and Modern Mathematical Physics: Proceedings of the 2nd International Workshop (Tampa, FL, USA, 9–11 March, 2013), AIP Conference Proceedings, 1562, no. 1, eds. W.-X. Ma, D. Kaup, AIP, Melville, NY, 2013, 123–155, arXiv: 1306.3197 | DOI
[40] S. Arthamonov, A. Mironov, A. Morozov, An. Morozov, “Link polynomial calculus and the AENV conjecture”, JHEP, 04 (2017), 156, 27 pp., arXiv: 1309.7984 | DOI
[41] Ya. Kononov, A. Morozov, “On the defect and stability of differential expansion”, Pisma v ZhETF, 101:12 (2015), 931–934, arXiv: 1504.07146 | DOI | DOI
[42] A. Morozov, “Differential expansion and rectangular HOMFLY for the figure eight knot”, Nucl. Phys., 911 (2015), 582–605, arXiv: 1605.09728 | DOI
[43] A. S. Anokhina, A. A. Morozov, “Protsedura kablirovaniya dlya raskrashennykh polinomov KhOMFLI”, TMF, 178:1 (2014), 3–68, arXiv: 1307.2216 | DOI | DOI | Zbl
[44] D. Galakhov, G. W. Moore, Comments on the two-dimensional Landau–Ginzburg approach to link homology, arXiv: 1607.04222
[45] A. Anokhina, A. Mironov, A. Morozov, An. Morozov, “Knot polynomials in the first non-symmetric representation”, Nucl. Phys. B, 882 (2014), 171–194, arXiv: 1211.6375 | DOI | MR
[46] A. Mironov, A. Morozov, An. Morozov, A. Sleptsov, Colored knot polynomials. HOMFLY in representation $[2,1]$, Internat. J. Modern Phys. A, 30, no. 26, 2015, 40 pp., arXiv: 1508.02870 | DOI | Zbl
[47] A. Mironov, A. Morozov, An. Morozov, A. Sleptsov, “HOMFLY polynomials in representation $[3,1]$ for 3-strand braids”, JHEP, 09 (2016), 134, 34 pp., arXiv: 1605.02313 | DOI | MR
[48] K. Liu, P. Peng, “Proof of the Labastida–Mariño–Ooguri–Vafa conjecture”, J. Differential Geom., 85:3 (2010), 479–525, arXiv: ; S. Zhu, “Colored HOMFLY polynomial via skein theory”, JHEP, 10 (2013), 229, 23 pp., arXiv: 0704.15261206.5886 | DOI | MR | DOI
[49] A. Morozov, “Factorization of differential expansion for antiparallel double-braid knots”, JHEP, 09 (2016), 135, 30 pp., arXiv: 1606.06015 | DOI | MR
[50] F. Griffits, Dzh. Kharris, Printsipy algebraicheskoi geometrii, Mir., M., 1982 | MR | MR | Zbl
[51] Ya. Kononov, A. Morozov, “Factorization of colored knot polynomials at roots of unity”, Phys. Lett. B, 747 (2015), 500–510, arXiv: 1505.06170 | DOI
[52] “The first-order deviation of superpolynomial in an arbitrary representation from the special polynomial”, Pisma v ZhETF, 97:4 (2013), 195–196, arXiv: 1211.4596 | DOI | DOI