Two-dimensional nuclear Coulomb scattering of a slow quantum
Teoretičeskaâ i matematičeskaâ fizika, Tome 193 (2017) no. 2, pp. 225-255 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We study two-dimensional scattering of a quantum particle by the superposition of a Coulomb potential and a central short-range potential. We analyze the low-energy asymptotic behavior of all radial wave functions, partial phases, and scattering cross sections of such a particle. We propose two approaches for evaluating the scattering length and the effective radius.
Keywords: two-dimensional scattering, superposition of Coulomb and central short-range potentials, low-energy asymptotic behavior, scattering length, effective radius.
@article{TMF_2017_193_2_a3,
     author = {V. V. Pupyshev},
     title = {Two-dimensional nuclear {Coulomb} scattering of a~slow quantum},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {225--255},
     year = {2017},
     volume = {193},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2017_193_2_a3/}
}
TY  - JOUR
AU  - V. V. Pupyshev
TI  - Two-dimensional nuclear Coulomb scattering of a slow quantum
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2017
SP  - 225
EP  - 255
VL  - 193
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2017_193_2_a3/
LA  - ru
ID  - TMF_2017_193_2_a3
ER  - 
%0 Journal Article
%A V. V. Pupyshev
%T Two-dimensional nuclear Coulomb scattering of a slow quantum
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2017
%P 225-255
%V 193
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2017_193_2_a3/
%G ru
%F TMF_2017_193_2_a3
V. V. Pupyshev. Two-dimensional nuclear Coulomb scattering of a slow quantum. Teoretičeskaâ i matematičeskaâ fizika, Tome 193 (2017) no. 2, pp. 225-255. http://geodesic.mathdoc.fr/item/TMF_2017_193_2_a3/

[1] D. Bollé, F. Gesztesy, “Scattering observables in arbitrary dimension $n\ge 2$”, Phys. Rev. A, 30:3 (1984), 1279–1293 | DOI

[2] H. Friedrich, Scattering Theory, Lecture Notes in Physics, 872, Springer, Berlin, 2013 | DOI | MR | Zbl

[3] V. V. Babikov, Metod fazovykh funktsii v kvantovoi mekhanike, Nauka, M., 1976 | MR

[4] V. V. Pupyshev, “Dvumernoe kulonovskoe rasseyanie kvantovoi chastitsy: stroenie radialnykh volnovykh funktsii”, TMF, 186:1 (2016), 123–141 | DOI | DOI | Zbl

[5] V. V. Pupyshev, “Dvumernoe kulonovskoe rasseyanie kvantovoi chastitsy: volnovye funktsii i funktsii Grina”, TMF, 186:2 (2016), 252–271 | DOI | DOI | MR | Zbl

[6] V. V. Pupyshev, “Dvumernoe kulonovskoe rasseyanie kvantovoi chastitsy: nizkoenergeticheskie asimptotiki”, TMF, 188:1 (2016), 49–75 | DOI | DOI | MR | Zbl

[7] V. V. Pupyshev, “Metod amplitudnykh funktsii v teorii dvumernogo rasseyaniya”, TMF, 191:1 (2017), 34–62 | DOI | DOI | MR

[8] E. Kamke, Spravochnik po obyknovennym differentsialnym uravneniyam, Nauka, M., 1976 | MR

[9] G. Beitmen, A. Erdeii, Vysshie transtsendentnye funktsii, v. 2, Funktsii Besselya, funktsii parabolicheskogo tsilindra, ortogonalnye mnogochleny, Nauka, M., 1974 | MR

[10] B. M. Budak, S. V. Fomin, Kratnye integraly i ryady, Fizmatlit, M., 2002 | MR | Zbl