Stability of solitary waves in membrane tubes: A weakly nonlinear
Teoretičeskaâ i matematičeskaâ fizika, Tome 193 (2017) no. 2, pp. 214-224 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We study the problem of the stability of solitary waves propagating in fluid-filled membrane tubes. We consider only waves whose speeds are close to speeds satisfying a linear dispersion relation (it is well known that there can be four families of solitary waves with such speeds), i.e., the waves with small (but finite) amplitudes branching from the rest state of the system. In other words, we use a weakly nonlinear description of solitary waves and show that if the solitary wave speed is bounded from zero, then the solitary wave itself is orbitally stable independently of whether the fluid is in the rest state at the initial time.
Mots-clés : membrane tube, bifurcation
Keywords: solitary wave, orbital stability.
@article{TMF_2017_193_2_a2,
     author = {A. T. Il'ichev},
     title = {Stability of solitary waves in membrane tubes: {A~weakly} nonlinear},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {214--224},
     year = {2017},
     volume = {193},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2017_193_2_a2/}
}
TY  - JOUR
AU  - A. T. Il'ichev
TI  - Stability of solitary waves in membrane tubes: A weakly nonlinear
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2017
SP  - 214
EP  - 224
VL  - 193
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2017_193_2_a2/
LA  - ru
ID  - TMF_2017_193_2_a2
ER  - 
%0 Journal Article
%A A. T. Il'ichev
%T Stability of solitary waves in membrane tubes: A weakly nonlinear
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2017
%P 214-224
%V 193
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2017_193_2_a2/
%G ru
%F TMF_2017_193_2_a2
A. T. Il'ichev. Stability of solitary waves in membrane tubes: A weakly nonlinear. Teoretičeskaâ i matematičeskaâ fizika, Tome 193 (2017) no. 2, pp. 214-224. http://geodesic.mathdoc.fr/item/TMF_2017_193_2_a2/

[1] L. K. Forbes, “Surface waves of large amplitude beneath an elastic sheet. I. High order series solution”, J. Fluid Mech., 169 (1986), 409–428 | DOI | MR | Zbl

[2] L. K. Forbes, “Surface waves of large amplitude beneath an elastic sheet. II. Galerkin solutions”, J. Fluid Mech., 188 (1988), 491–508 | DOI | MR | Zbl

[3] A. T. Ilichev, “Uedinennye volnovye pakety i temnye solitony na poverkhnosti razdela voda–led”, Tr. MIAN, 289 (2015), 163–177 | DOI | DOI | Zbl

[4] A. T. Ilichev, “Solitonopodobnye struktury na poverkhnosti razdela voda–led”, UMN, 70:6(426) (2015), 85–138 | DOI | DOI | MR | Zbl

[5] A. T. Ilichev, “Uedinennye volnovye pakety pod szhatym ledovym pokrovom”, Izv. RAN. MZhG, 51:3 (2016), 32–42 | Zbl

[6] A. T. Il'ichev, Y.-B. Fu, “Stability of an inflated hyperelastic membrane tube with localized wall thinning”, Internat. J. Eng. Sci., 80 (2014), 53–61 | DOI | MR

[7] G. F. Holzapfel, R. W. Ogden, “Constitutive modelling of arteries”, Proc. Roy. Soc. London Ser. A, 466:2118 (2010), 1551–1597 | DOI | MR | Zbl

[8] D. Sodhani, S. Reese, R. Moreira, P. Mela, S. Jockenhoevel, S. E. Stapleton, “Multi-scale modelling of textile reinforced artificial tubular aortic heart valves”, Meccanica, 52:3 (2017), 677–693 | DOI

[9] S. P. Pearse, Y.-B. Fu, “Characterization and stability of localized bulging/necking in inflated membrane tubes”, IMA J. Appl. Math., 75:4 (2010), 581–602 | DOI | MR

[10] A. T. Il'ichev, Y.-B. Fu, “Stability of aneurysm solutions in a fluid-filled elastic membrane tube”, Acta Mech. Sin., 28:4 (2012), 1209–1218 | DOI | MR | Zbl

[11] Y.-B. Fu, A. T. Il'ichev, “Localized standing waves in a hyperelastic membrane tube and their stabilization by a mean flow”, Math. Mech. Solids, 20 (2015), 1198–2014 | DOI | MR

[12] M. Epstein, C. Johnston, “On the exact speed and amplitude of solitary waves in fluid-filled elastic tubes”, Proc. Roy. Soc. London Ser. A, 457:2009 (2001), 1195–1213 | DOI | MR | Zbl

[13] D. M. Haughton, R. W. Ogden, “Bifurcation of inflated circular cylinders of elastic material under axial loading. I. Membrane theory for thin-walled tubes”, J. Mech. Phys. Solids, 27:3 (1979), 179–212 | DOI | MR | Zbl

[14] R. W. Ogden, “Large deformation isotropic elasticity – on the correlation of theory and experiment for incompressible rubber-like solids”, Proc. Roy. Soc. London Ser. A, 326:1567 (1972), 565–584 | DOI | Zbl

[15] A. N. Gent, “A new constitutive relation for rubber”, Rubber Chem. Tech., 69:1 (1996), 59–61 | DOI

[16] B. Budiansky, “Notes on nonlinear shell theory”, J. Appl. Mech., 35:2 (1968), 393–401 | DOI

[17] Y.-B. Fu, A. T. Il'ichev, “Solitary waves in fluid-filled elastic tubes: existence, persistence, and the role of axial displacement”, IMA J. Appl. Math., 75:2 (2010), 257–268 | DOI | MR | Zbl

[18] G. Iooss, K. Kirchgässner, “Water waves for a small surface tension: An approach via normal form”, Proc. R. Soc. Edinburgh Sect. A, 122:3–4 (1992), 267–299 | DOI | MR | Zbl

[19] Y.-C. Chen, “Stability and bifurcation of finite deformations of elastic cylindrical membranes – Part I: Stability analysis”, Internat. J. Sol. Struct., 34:14 (1997), 1735–1749 | DOI | Zbl

[20] T. B. Benjamin, “The stability of solitary waves”, Proc. Roy. Soc. London Ser. A, 328:1573 (1972), 153–183 | DOI | MR

[21] M. Grillakis, J. Shatah, W. Strauss, “Stability theory of solitary waves in the presence of symmetry. I”, J. Funct. Anal., 74:1 (1987), 160–197 | DOI | MR | Zbl

[22] F. Drazin, Vvedenie v teoriyu gidrodinamicheskoi ustoichivosti, Fizmatlit, M., 2005