Keywords: solitary wave, orbital stability.
@article{TMF_2017_193_2_a2,
author = {A. T. Il'ichev},
title = {Stability of solitary waves in membrane tubes: {A~weakly} nonlinear},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {214--224},
year = {2017},
volume = {193},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2017_193_2_a2/}
}
A. T. Il'ichev. Stability of solitary waves in membrane tubes: A weakly nonlinear. Teoretičeskaâ i matematičeskaâ fizika, Tome 193 (2017) no. 2, pp. 214-224. http://geodesic.mathdoc.fr/item/TMF_2017_193_2_a2/
[1] L. K. Forbes, “Surface waves of large amplitude beneath an elastic sheet. I. High order series solution”, J. Fluid Mech., 169 (1986), 409–428 | DOI | MR | Zbl
[2] L. K. Forbes, “Surface waves of large amplitude beneath an elastic sheet. II. Galerkin solutions”, J. Fluid Mech., 188 (1988), 491–508 | DOI | MR | Zbl
[3] A. T. Ilichev, “Uedinennye volnovye pakety i temnye solitony na poverkhnosti razdela voda–led”, Tr. MIAN, 289 (2015), 163–177 | DOI | DOI | Zbl
[4] A. T. Ilichev, “Solitonopodobnye struktury na poverkhnosti razdela voda–led”, UMN, 70:6(426) (2015), 85–138 | DOI | DOI | MR | Zbl
[5] A. T. Ilichev, “Uedinennye volnovye pakety pod szhatym ledovym pokrovom”, Izv. RAN. MZhG, 51:3 (2016), 32–42 | Zbl
[6] A. T. Il'ichev, Y.-B. Fu, “Stability of an inflated hyperelastic membrane tube with localized wall thinning”, Internat. J. Eng. Sci., 80 (2014), 53–61 | DOI | MR
[7] G. F. Holzapfel, R. W. Ogden, “Constitutive modelling of arteries”, Proc. Roy. Soc. London Ser. A, 466:2118 (2010), 1551–1597 | DOI | MR | Zbl
[8] D. Sodhani, S. Reese, R. Moreira, P. Mela, S. Jockenhoevel, S. E. Stapleton, “Multi-scale modelling of textile reinforced artificial tubular aortic heart valves”, Meccanica, 52:3 (2017), 677–693 | DOI
[9] S. P. Pearse, Y.-B. Fu, “Characterization and stability of localized bulging/necking in inflated membrane tubes”, IMA J. Appl. Math., 75:4 (2010), 581–602 | DOI | MR
[10] A. T. Il'ichev, Y.-B. Fu, “Stability of aneurysm solutions in a fluid-filled elastic membrane tube”, Acta Mech. Sin., 28:4 (2012), 1209–1218 | DOI | MR | Zbl
[11] Y.-B. Fu, A. T. Il'ichev, “Localized standing waves in a hyperelastic membrane tube and their stabilization by a mean flow”, Math. Mech. Solids, 20 (2015), 1198–2014 | DOI | MR
[12] M. Epstein, C. Johnston, “On the exact speed and amplitude of solitary waves in fluid-filled elastic tubes”, Proc. Roy. Soc. London Ser. A, 457:2009 (2001), 1195–1213 | DOI | MR | Zbl
[13] D. M. Haughton, R. W. Ogden, “Bifurcation of inflated circular cylinders of elastic material under axial loading. I. Membrane theory for thin-walled tubes”, J. Mech. Phys. Solids, 27:3 (1979), 179–212 | DOI | MR | Zbl
[14] R. W. Ogden, “Large deformation isotropic elasticity – on the correlation of theory and experiment for incompressible rubber-like solids”, Proc. Roy. Soc. London Ser. A, 326:1567 (1972), 565–584 | DOI | Zbl
[15] A. N. Gent, “A new constitutive relation for rubber”, Rubber Chem. Tech., 69:1 (1996), 59–61 | DOI
[16] B. Budiansky, “Notes on nonlinear shell theory”, J. Appl. Mech., 35:2 (1968), 393–401 | DOI
[17] Y.-B. Fu, A. T. Il'ichev, “Solitary waves in fluid-filled elastic tubes: existence, persistence, and the role of axial displacement”, IMA J. Appl. Math., 75:2 (2010), 257–268 | DOI | MR | Zbl
[18] G. Iooss, K. Kirchgässner, “Water waves for a small surface tension: An approach via normal form”, Proc. R. Soc. Edinburgh Sect. A, 122:3–4 (1992), 267–299 | DOI | MR | Zbl
[19] Y.-C. Chen, “Stability and bifurcation of finite deformations of elastic cylindrical membranes – Part I: Stability analysis”, Internat. J. Sol. Struct., 34:14 (1997), 1735–1749 | DOI | Zbl
[20] T. B. Benjamin, “The stability of solitary waves”, Proc. Roy. Soc. London Ser. A, 328:1573 (1972), 153–183 | DOI | MR
[21] M. Grillakis, J. Shatah, W. Strauss, “Stability theory of solitary waves in the presence of symmetry. I”, J. Funct. Anal., 74:1 (1987), 160–197 | DOI | MR | Zbl
[22] F. Drazin, Vvedenie v teoriyu gidrodinamicheskoi ustoichivosti, Fizmatlit, M., 2005