New information-entropic relations for Clebsch–Gordan coefficients
Teoretičeskaâ i matematičeskaâ fizika, Tome 193 (2017) no. 2, pp. 356-366 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Using properties of the Shannon and Tsallis entropies, we obtain new inequalities for the Clebsch–Gordan coefficients of the group $SU(2)$. For this, we use squares of the Clebsch–Gordan coefficients as probability distributions. The obtained relations are new characteristics of correlations in a quantum system of two spins. We also find new inequalities for Hahn polynomials and the hypergeometric functions ${}_3F_2$.
Keywords: information-entropic inequality, Shannon entropy, Tsallis entropy, subadditivity condition.
Mots-clés : Clebsch–Gordan coefficient, Wigner $3j$ symbol, Hahn polynomial
@article{TMF_2017_193_2_a10,
     author = {V. N. Chernega and O. V. Man'ko and V. I. Man'ko and Z. Seilov},
     title = {New information-entropic relations for {Clebsch{\textendash}Gordan} coefficients},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {356--366},
     year = {2017},
     volume = {193},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2017_193_2_a10/}
}
TY  - JOUR
AU  - V. N. Chernega
AU  - O. V. Man'ko
AU  - V. I. Man'ko
AU  - Z. Seilov
TI  - New information-entropic relations for Clebsch–Gordan coefficients
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2017
SP  - 356
EP  - 366
VL  - 193
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2017_193_2_a10/
LA  - ru
ID  - TMF_2017_193_2_a10
ER  - 
%0 Journal Article
%A V. N. Chernega
%A O. V. Man'ko
%A V. I. Man'ko
%A Z. Seilov
%T New information-entropic relations for Clebsch–Gordan coefficients
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2017
%P 356-366
%V 193
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2017_193_2_a10/
%G ru
%F TMF_2017_193_2_a10
V. N. Chernega; O. V. Man'ko; V. I. Man'ko; Z. Seilov. New information-entropic relations for Clebsch–Gordan coefficients. Teoretičeskaâ i matematičeskaâ fizika, Tome 193 (2017) no. 2, pp. 356-366. http://geodesic.mathdoc.fr/item/TMF_2017_193_2_a10/

[1] L. C. Biedenharn, J. D. Louck, Angular Momentum in Quantum Physics. Theory and application, Encyclopedia of Mathematics and Its Applications, 8, Addison–Wesley, Reading, MA, 1981 | MR | Zbl

[2] L. D. Landau, E. M. Lifshits, Kurs teoreticheskoi fiziki, v. 3, Kvantovaya mekhanika. Nerelyativistskaya teoriya, Fizmatlit, M., 2004 | MR

[3] A. R. Edmonds, Angular Momentum in Quantum Mechanics, Princeton Univ. Press, Princeton, NJ, 1958 | MR

[4] N. Ja. Vilenkin, A. U. Klimyk, Representation of Lie Groups and Special Functions: Recent Advances, Mathematics and Its Applications, 316, Kluwer, Dordrecht, 1995 | DOI | MR

[5] E. P. Wigner, “On the matrices which reduce the Kronecker products of representations of S. R. groups”, The Collected Works of Eugene Paul Wigner. Part A. The Scientific Papers, eds. A. S. Wightman, Springer, Berlin, 1993, 608–654 | MR

[6] Yu. F. Smirnov, S. K. Suslov, J. M. Shirokov, “Clebsch–Gordan coefficients and Racah coefficients for the ${\rm SU}(2)$ and $\rm{SU}(1, 1)$ groups as the discrete analogs of the Pöschl–Teller potential wavefunctions”, J. Phys. A: Math. Gen., 17:11 (1984), 2157–2175 | DOI | MR | Zbl

[7] Ya. A. Smorodinskii, L. A. Shelepin, “Koeffitsienty Klebsha–Gordana s raznykh storon”, UFN, 106:1 (1972), 3–45 | DOI | DOI

[8] Z. Plunař, Yu. F. Smirnov, V. N. Tolstoy, “Clebsch–Gordan coefficients of ${\rm SU}(3)$ with simple symmetry properties”, J. Phys. A: Math. Gen., 19:1 (1986), 21–28 | DOI | MR

[9] W. Hahn, “Über orthogonalpolynome, die $q$-differenzengleichungen genügen”, Math. Nachr., 2:1–2 (1949), 4–34 | DOI | Zbl

[10] G. Beitman, A. Erdein, Vysshie transtsendentnye funktsii, v. 2, Funktsii Besselya, funktsii parabolicheskogo tsilindra, ortogonalnye mnogochleny, Nauka, M., 1974 | MR

[11] S. Karlin, J. R. McGregor, “The Hahn polynomials, formulas and applications”, Scr. Math., 26 (1961), 33–46 | MR | Zbl

[12] V. N. Chernega, O. V. Man'ko, “No signaling and strong subadditivity condition for tomographic $q$-entropy of single qudit states”, Phys. Scr., 90:7 (2015), 074052 | DOI

[13] M. A. Man'ko, V. I. Man'ko, “No-signaling property of the single-qudit-state tomogram”, J. Russ. Laser Res., 35:6 (2014), 582–589 | DOI

[14] V. N. Chernega, O. V. Man'ko, “Tomographic and improved subadditivity conditions for two qubits and a qudit with $j=3/2$”, J. Russ. Laser Res., 35:1 (2014), 27–38 | DOI

[15] M. A. Man'ko, V. I. Man'ko, “The quantum strong subadditivity condition for systems without subsystems”, Phys. Scr., 2014:T160 (2014), 014030 | DOI

[16] V. N. Chernega, O. V. Manko, V. I. Manko, “New inequality for density matrices of single qudit states”, J. Russ. Laser Res., 35:5 (2014), 457–461 | DOI

[17] A. S. Holevo, Probabilistic and Statistical Aspects of Quantum Theory, North-Holland Series in Statistics and Probability, 1, North Holland, Amsterdam, 1982 | MR

[18] L. E. Vicent, K. B. Wolf, “Unitary transformation between Cartesian- and polar-pixellated screens”, J. Opt. Soc. Am. A, 25:8 (2008), 1875–1884 | DOI

[19] A. F. Nikiforov, S. K. Suslov, V. B. Uvarov, Klassicheskie ortogonalnye polinomy diskretnoi peremennoi, Nauka, M., 1985 | DOI | MR | MR | Zbl

[20] R. M. Askerova, U. F. Smirnov, V. N. Tolstoi, “Ob obschei analiticheskoi formule dlya $U_q (su (3))$-koeffitsientov Klebsha–Gordana”, YaF, 64:12 (2001), 2170–2175 | DOI | MR

[21] V. I. Manko, O. V. Manko, “Tomografiya spinovykh sostoyanii”, ZhETF, 112:3(9) (1997), 796–804 | DOI

[22] V. V. Dodonov, V. I. Man'ko, “Positive distribution description for spin states”, Phys. Lett. A, 229:6 (1997), 335–339 | DOI | MR | Zbl

[23] O. Castaños, R. López-Peña, M. A. Man'ko, V. I. Man'ko, “Kernel of star-product for spin tomograms”, J. Phys. A: Math. Gen., 36:16 (2003), 4677–4688 | DOI | MR

[24] C. E. Shannon, “A mathematical theory of communication”, Bell System Tech. J., 27:3 (1948), 379–423; | DOI | MR | Zbl

[25] H. Araki, E. H. Lieb, “Entropy Inequalities”, Commun. Math. Phys., 18:2 (1970), 160–170 | DOI | MR

[26] C. Tsallis, “Nonextensive statistical mechanics and thermodynamics: historical background and present status”, Nonextensive Generalization of Boltzmann–Gibbs Statistical Mechanics and Its Applications (Okazaki, February 15–18, 1999), Lecture Notes in Physics, 560, eds. S. Abe, Y. Okamoto, Springer, Berlin, 2001, 3–98 | DOI | MR

[27] N. M. Atakishiyev, S. K. Suslov, “The Hahn and Meixner polynomials of an imaginary argument and some of their applications”, J. Phys. A: Math. Gen., 18:10 (1985), 1583–1596 | DOI | MR