Phase portraits of the~full symmetric Toda systems on rank-$2$ groups
    
    
  
  
  
      
      
      
        
Teoretičeskaâ i matematičeskaâ fizika, Tome 193 (2017) no. 2, pp. 193-213
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			We continue investigations begun in our previous works where we proved that the phase diagram of the Toda system on special linear groups can be identified with the Bruhat order on the symmetric group if all eigenvalues of the Lax matrix are distinct or with the Bruhat order on permutations of a multiset if there are multiple eigenvalues. We show that the phase portrait of the Toda system and the Hasse diagram of the Bruhat order coincide in the case of an arbitrary simple Lie group of rank $2$. For this, we verify this property for the two remaining rank-$2$ groups, $Sp(4,\mathbb R)$ and the real form of $G_2$.
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Keywords: 
full symmetric Toda system, Bruhat order, Morse function, Weyl group.
Mots-clés : semisimple Lie group
                    
                  
                
                
                Mots-clés : semisimple Lie group
@article{TMF_2017_193_2_a1,
     author = {A. S. Sorin and Yu. B. Chernyakov and G. I. Sharygin},
     title = {Phase portraits of the~full symmetric {Toda} systems on rank-$2$ groups},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {193--213},
     publisher = {mathdoc},
     volume = {193},
     number = {2},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2017_193_2_a1/}
}
                      
                      
                    TY - JOUR AU - A. S. Sorin AU - Yu. B. Chernyakov AU - G. I. Sharygin TI - Phase portraits of the~full symmetric Toda systems on rank-$2$ groups JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2017 SP - 193 EP - 213 VL - 193 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_2017_193_2_a1/ LA - ru ID - TMF_2017_193_2_a1 ER -
%0 Journal Article %A A. S. Sorin %A Yu. B. Chernyakov %A G. I. Sharygin %T Phase portraits of the~full symmetric Toda systems on rank-$2$ groups %J Teoretičeskaâ i matematičeskaâ fizika %D 2017 %P 193-213 %V 193 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/TMF_2017_193_2_a1/ %G ru %F TMF_2017_193_2_a1
A. S. Sorin; Yu. B. Chernyakov; G. I. Sharygin. Phase portraits of the~full symmetric Toda systems on rank-$2$ groups. Teoretičeskaâ i matematičeskaâ fizika, Tome 193 (2017) no. 2, pp. 193-213. http://geodesic.mathdoc.fr/item/TMF_2017_193_2_a1/
