Mots-clés : semisimple Lie group
@article{TMF_2017_193_2_a1,
author = {A. S. Sorin and Yu. B. Chernyakov and G. I. Sharygin},
title = {Phase portraits of the~full symmetric {Toda} systems on rank-$2$ groups},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {193--213},
year = {2017},
volume = {193},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2017_193_2_a1/}
}
TY - JOUR AU - A. S. Sorin AU - Yu. B. Chernyakov AU - G. I. Sharygin TI - Phase portraits of the full symmetric Toda systems on rank-$2$ groups JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2017 SP - 193 EP - 213 VL - 193 IS - 2 UR - http://geodesic.mathdoc.fr/item/TMF_2017_193_2_a1/ LA - ru ID - TMF_2017_193_2_a1 ER -
A. S. Sorin; Yu. B. Chernyakov; G. I. Sharygin. Phase portraits of the full symmetric Toda systems on rank-$2$ groups. Teoretičeskaâ i matematičeskaâ fizika, Tome 193 (2017) no. 2, pp. 193-213. http://geodesic.mathdoc.fr/item/TMF_2017_193_2_a1/
[1] A. M. Bloch, R. W. Brockett, T. S. Ratiu, “Completely integrable gradient flows”, Commun. Math. Phys., 147:1 (1992), 57–74 | DOI | MR | Zbl
[2] Y. Kodama, J. Ye, “Iso-spectral deformations of general matrix and their reductions on Lie algebras”, Commun. Math. Phys., 178:3 (1996), 765–788 | DOI | MR | Zbl
[3] Yu. B. Chernyakov, G. I. Sharygin, A. S. Sorin, “Bruhat order in full symmetric Toda system”, Commun. Math. Phys., 330:1 (2014), 367–399, arXiv: 1212.4803 | DOI | MR | Zbl
[4] Yu. B. Chernyakov, G. I. Sharygin, A. S. Sorin, “Bruhat order in the full symmetric $\mathfrak{sl}_n$ Toda lattice on partial flag space”, SIGMA, 12 (2016), 084, 25 pp., arXiv: 1412.8116 | MR | Zbl
[5] P. Deift, T. Nanda, C. Tomei, “Ordinary differential equations and the symmetric eigenvalue problem”, SIAM J. Numer. Anal., 20:1 (1983), 1–22 | DOI | MR | Zbl
[6] P. Fré, A. S. Sorin, “The Weyl group and asymptotics: All supergravity billiards have a closed form general integral”, Nucl. Phys. B, 815:3 (2009), 430–494, arXiv: 0710.1059 | DOI | MR | Zbl
[7] P. Fré, A. S. Sorin, M. Trigiante, “Integrability of supergravity black holes and new tensor classifiers of regular and nilpotent orbits”, JHEP, 04 (2012), 015, 105 pp., arXiv: 1103.0848 | MR
[8] Y. Kodama, L. Williams, “The full Kostant–Toda hierarchy on the positive flag variety”, Commun. Math. Phys., 335:1 (2015), 247–283, arXiv: 1308.5011 | DOI | MR
[9] U. Fulton, Tablitsy Yunga i ikh prilozheniya k teorii predstavlenii i geometrii, MTsNMO, M., 2006 | MR | Zbl
[10] A. Björner, F. Brenti, Combinatorics of Coxeter Groups, Graduate Texts in Mathematics, 231, Springer, New York, 2005 | MR
[11] M. Brion, “Lectures on the Geometry of Flag Varieties”, Topics in Cohomological Studies of Algebraic Varieties, Trends in Mathematics, ed. P. Pragacz, Birkhäuser, Basel, 2005, 33–85, arXiv: math/0410240 | DOI | MR
[12] F. De Mari, M. Pedroni, “Toda flows and real Hessenberg manifolds”, J. Geom. Anal., 9:4 (1999), 607–625 | DOI | MR | Zbl
[13] P. Deift, L. C. Li, T. Nanda, C. Tomei, “The Toda flow on a generic orbit is integrable”, Commun. Pure Appl. Math., 39:2 (1986), 183–232 | DOI | MR | Zbl
[14] N. Ercolani, H. Flaschka, S. Singer, “The geometry of the full Kostant–Toda lattice”, Integrable Systems (Luminy, France, July 1–5, 1991), Progress in Mathematics, 115, eds. O. Babelon, P. Cartier, Y. Kosmann-Schwarzbach, Birkhäuser, Boston, 1993, 181–226 | MR
[15] M. Adler, “On a trace functional for pseudo-differential operators and the symplectic structure of the Korteweg–Devries type equations”, Invent. Math., 50:3 (1979), 219–248 | DOI | MR | Zbl
[16] B. Kostant, “The solution to a generalized Toda lattice and representation theory”, Adv. Math., 34:3 (1979), 195–338 | DOI | MR | Zbl
[17] W. W. Symes, “Systems of Toda type, inverse spectral problems, and representation theory”, Invent. Math., 59:1 (1980), 13–51 | DOI | MR | Zbl
[18] Yu. B. Chernyakov, A. S. Sorin, “Explicit semi-invariants and integrals of the full symmetric $\mathfrak{sl}_n$ Toda lattice”, Lett. Math. Phys., 104:8 (2014), 1045–1052, arXiv: 1306.1647 | DOI | MR | Zbl
[19] K. I. Gross, “The Plancherel transform on the nilpotent part of $G_2$ and some applications to the representation theory of $G_2$”, Trans. Amer. Math. Soc., 132:2 (196), 411–446 | DOI | MR
[20] A. S. Sorin, Yu. B. Chernyakov, “Novyi metod postroeniya poluinvariantov i integralov polnoi simmetrichnoi $\mathfrak{sl}_n$ reshetki Tody”, TMF, 183:2 (2015), 222–253, arXiv: 1312.4555 | DOI | DOI | MR