Local solvability and solution blow-up of one-dimensional equations of the Yajima–Oikawa–Satsuma type
Teoretičeskaâ i matematičeskaâ fizika, Tome 193 (2017) no. 2, pp. 179-192 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider one-dimensional equations of the type of the Yajima–Oikawa–Satsuma ion acoustic wave equation and prove the local solvability. Using the test function method, we obtain sufficient conditions for solution blow-up and estimate the blow-up time.
Keywords: blow-up, local solvability, ion acoustic wave.
@article{TMF_2017_193_2_a0,
     author = {A. A. Panin and G. I. Shlyapugin},
     title = {Local solvability and solution blow-up of one-dimensional equations of {the~Yajima{\textendash}Oikawa{\textendash}Satsuma} type},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {179--192},
     year = {2017},
     volume = {193},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2017_193_2_a0/}
}
TY  - JOUR
AU  - A. A. Panin
AU  - G. I. Shlyapugin
TI  - Local solvability and solution blow-up of one-dimensional equations of the Yajima–Oikawa–Satsuma type
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2017
SP  - 179
EP  - 192
VL  - 193
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2017_193_2_a0/
LA  - ru
ID  - TMF_2017_193_2_a0
ER  - 
%0 Journal Article
%A A. A. Panin
%A G. I. Shlyapugin
%T Local solvability and solution blow-up of one-dimensional equations of the Yajima–Oikawa–Satsuma type
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2017
%P 179-192
%V 193
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2017_193_2_a0/
%G ru
%F TMF_2017_193_2_a0
A. A. Panin; G. I. Shlyapugin. Local solvability and solution blow-up of one-dimensional equations of the Yajima–Oikawa–Satsuma type. Teoretičeskaâ i matematičeskaâ fizika, Tome 193 (2017) no. 2, pp. 179-192. http://geodesic.mathdoc.fr/item/TMF_2017_193_2_a0/

[1] N. Yajima, M. Oikawa, J. Satsuma, “Interaction of ion-acoustic solitons in three-dimensional space”, J. Phys. Soc. Japan, 44:5 (1978), 1711–1714 | DOI

[2] F. Kako, N. Yajima, “Interaction of ion-acoustic solitons in two-dimensional space”, J. Phys. Soc. Japan, 49:5 (1980), 2063–2071 | DOI | MR | Zbl

[3] E. Infeld, Dzh. Roulands, Nelineinye volny, solitony i khaos, M., Fizmatlit, 2006 | DOI | MR | Zbl

[4] Y. Chen, R. Liu, “Some new nonlinear wave solutions for two $(3+1)$-dimensional equations”, Appl. Math. Comput., 260:1 (2015), 397–411 | DOI | MR

[5] A. Boruah, S. K. Sharma, H. Bailung, Y. Nakamura, “Oblique collision of dust acoustic solitons in a strongly coupled dusty plasma”, Phys. Plasmas, 22:9 (2015), 093706 | DOI

[6] M. O. Korpusov, A. A. Panin, “Lokalnaya razreshimost i razrushenie resheniya dlya uravneniya Bendzhamena–Bona–Makhoni–Byurgersa s nelokalnym granichnym usloviem”, TMF, 175:2 (2013), 159–172 | DOI | DOI | MR | Zbl

[7] E. Mitidieri, S. I. Pokhozhaev, “Apriornye otsenki i otsutstvie reshenii nelineinykh uravnenii i neravenstv v chastnykh proizvodnykh”, Tr. MIAN, 234, 2001, 3–383 | MR | Zbl

[8] H. A. Levine, “Some nonexistence and instability theorems for solutions of formally parabolic equations of the form $Pu_t=-Au+\mathcal{F}(u)$”, Arch. Rational Mech. Anal., 51:5 (1973), 371–386 | DOI | Zbl

[9] H. A. Levine, “Instability and nonexistence of global solutions to nonlinear wave equations of the form $Pu_{tt}=-Au+\mathscr{F}(u)$”, Trans. Amer. Math. Soc., 192 (1974), 1–21 | DOI | MR | Zbl

[10] V. K. Kalantarov, O. A. Ladyzhenskaya, “O vozniknovenii kollapsov dlya kvazilineinykh uravnenii parabolicheskogo i giperbolicheskogo tipov”, Zap. nauchn. sem. LOMI, 69 (1977), 77–102 | DOI | MR | Zbl

[11] A. G. Sveshnikov, A. B. Alshin, M. O. Korpusov, Yu. D. Pletner, Lineinye i nelineinye uravneniya sobolevskogo tipa, Fizmatlit, M., 2007

[12] A. A. Samarskii, V. A. Galaktionov, S. P. Kurdyumov, A. P. Mikhailov, Rezhimy s obostreniem v zadachakh dlya kvazilineinykh parabolicheskikh uravnenii, Nauka, M., 1987 | MR

[13] V. A. Galaktionov, S. I. Pokhozhaev, “Uravneniya nelineinoi dispersii tretego poryadka: udarnye volny, volny razrezheniya i razrusheniya”, Zh. vychisl. matem. i matem. fiz., 48:10 (2008), 1819–1846 | DOI | MR | Zbl

[14] A. A. Panin, “O lokalnoi razreshimosti i razrushenii resheniya abstraktnogo nelineinogo integralnogo uravneniya Volterra”, Matem. zametki, 97:6 (2015), 884–903 | DOI | DOI | MR

[15] M. O. Korpusov, A. G. Sveshnikov, E. V. Yushkov, Metody teorii razrusheniya reshenii nelineinykh uravnenii matematicheskoi fiziki, Fizicheskii fakultet MGU, M., 2014