Formation of a~relation of nonlocalities in the~anomalous diffusion model
Teoretičeskaâ i matematičeskaâ fizika, Tome 193 (2017) no. 1, pp. 115-132

Voir la notice de l'article provenant de la source Math-Net.Ru

We construct a model of a random walk in which the relation of space–time nonlocalities is defined by the structure of memory flow and a stochastic force model. The proposed model allows computing the parameters that characterize the nonlocality of the medium exposure and the particle memory.
Mots-clés : anomalous diffusion, scale invariance.
Keywords: memory flow, space–time nonlocality, nonlocality parameter, Cantor staircase, fractional (fractal) Brownian motion
@article{TMF_2017_193_1_a7,
     author = {N. S. Arkashov and V. A. Seleznev},
     title = {Formation of a~relation of nonlocalities in the~anomalous diffusion model},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {115--132},
     publisher = {mathdoc},
     volume = {193},
     number = {1},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2017_193_1_a7/}
}
TY  - JOUR
AU  - N. S. Arkashov
AU  - V. A. Seleznev
TI  - Formation of a~relation of nonlocalities in the~anomalous diffusion model
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2017
SP  - 115
EP  - 132
VL  - 193
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_2017_193_1_a7/
LA  - ru
ID  - TMF_2017_193_1_a7
ER  - 
%0 Journal Article
%A N. S. Arkashov
%A V. A. Seleznev
%T Formation of a~relation of nonlocalities in the~anomalous diffusion model
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2017
%P 115-132
%V 193
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_2017_193_1_a7/
%G ru
%F TMF_2017_193_1_a7
N. S. Arkashov; V. A. Seleznev. Formation of a~relation of nonlocalities in the~anomalous diffusion model. Teoretičeskaâ i matematičeskaâ fizika, Tome 193 (2017) no. 1, pp. 115-132. http://geodesic.mathdoc.fr/item/TMF_2017_193_1_a7/