Formation of a~relation of nonlocalities in the~anomalous diffusion model
Teoretičeskaâ i matematičeskaâ fizika, Tome 193 (2017) no. 1, pp. 115-132
Voir la notice de l'article provenant de la source Math-Net.Ru
We construct a model of a random walk in which the relation of space–time nonlocalities is defined by the structure of memory flow and a stochastic force model. The proposed model allows computing the parameters that characterize the nonlocality of the medium exposure and the particle memory.
Mots-clés :
anomalous diffusion, scale invariance.
Keywords: memory flow, space–time nonlocality, nonlocality parameter, Cantor staircase, fractional (fractal) Brownian motion
Keywords: memory flow, space–time nonlocality, nonlocality parameter, Cantor staircase, fractional (fractal) Brownian motion
@article{TMF_2017_193_1_a7,
author = {N. S. Arkashov and V. A. Seleznev},
title = {Formation of a~relation of nonlocalities in the~anomalous diffusion model},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {115--132},
publisher = {mathdoc},
volume = {193},
number = {1},
year = {2017},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2017_193_1_a7/}
}
TY - JOUR AU - N. S. Arkashov AU - V. A. Seleznev TI - Formation of a~relation of nonlocalities in the~anomalous diffusion model JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2017 SP - 115 EP - 132 VL - 193 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_2017_193_1_a7/ LA - ru ID - TMF_2017_193_1_a7 ER -
N. S. Arkashov; V. A. Seleznev. Formation of a~relation of nonlocalities in the~anomalous diffusion model. Teoretičeskaâ i matematičeskaâ fizika, Tome 193 (2017) no. 1, pp. 115-132. http://geodesic.mathdoc.fr/item/TMF_2017_193_1_a7/