Asymptotic behavior of the spectrum of combination scattering at Stokes phonons
Teoretičeskaâ i matematičeskaâ fizika, Tome 193 (2017) no. 1, pp. 84-103 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

For a class of polynomial quantum Hamiltonians used in models of combination scattering in quantum optics, we obtain the asymptotic behavior of the spectrum for large occupation numbers in the secondary quantization representation. Hamiltonians of this class can be diagonalized using a special system of polynomials determined by recurrence relations with coefficients depending on a parameter (occupation number). For this system of polynomials, we determine the asymptotic behavior a discrete measure with respect to which they are orthogonal. The obtained limit measures are interpreted as equilibrium measures in extremum problems for a logarithmic potential in an external field and with constraints on the measure. We illustrate the general case with an exactly solvable example where the Hamiltonian can be diagonalized by the canonical Bogoliubov transformation and the special orthogonal polynomials degenerate into the Krawtchouk classical discrete polynomials.
Keywords: creation operator, annihilation operator, polynomial quantum Hamiltonian, combination scattering, asymptotics of a discrete orthogonal polynomial, equilibrium measure in an external field.
@article{TMF_2017_193_1_a5,
     author = {A. I. Aptekarev and M. A. Lapik and Yu. N. Orlov},
     title = {Asymptotic behavior of the~spectrum of combination scattering at {Stokes} phonons},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {84--103},
     year = {2017},
     volume = {193},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2017_193_1_a5/}
}
TY  - JOUR
AU  - A. I. Aptekarev
AU  - M. A. Lapik
AU  - Yu. N. Orlov
TI  - Asymptotic behavior of the spectrum of combination scattering at Stokes phonons
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2017
SP  - 84
EP  - 103
VL  - 193
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2017_193_1_a5/
LA  - ru
ID  - TMF_2017_193_1_a5
ER  - 
%0 Journal Article
%A A. I. Aptekarev
%A M. A. Lapik
%A Yu. N. Orlov
%T Asymptotic behavior of the spectrum of combination scattering at Stokes phonons
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2017
%P 84-103
%V 193
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2017_193_1_a5/
%G ru
%F TMF_2017_193_1_a5
A. I. Aptekarev; M. A. Lapik; Yu. N. Orlov. Asymptotic behavior of the spectrum of combination scattering at Stokes phonons. Teoretičeskaâ i matematičeskaâ fizika, Tome 193 (2017) no. 1, pp. 84-103. http://geodesic.mathdoc.fr/item/TMF_2017_193_1_a5/

[1] Ja. Perina, Quantum Statistics of Nonlinear Optics, Reidel, Dordrecht, 1984

[2] V. V. Vedenyapin, Yu. N. Orlov, “O zakonakh sokhraneniya dlya polinomialnykh gamiltonianov i dlya diskretnykh modelei uravneniya Boltsmana”, TMF, 121:2 (1999), 307–315 | DOI | DOI | MR | Zbl

[3] N. N. Bogolyubov, N. N. Bogolyubov (ml.), Vvedenie v kvantovuyu statisticheskuyu mekhaniku, Nauka, M., 1984 | MR

[4] V. G. Bagrov, B. F. Samsonov, “Preobrazovanie Darbu, faktorizatsiya, supersimmetriya v odnomernoi kvantovoi mekhanike”, TMF, 104:2 (1995), 356–367 | DOI | MR | Zbl

[5] B. F. Samsonov, J. Negro, “Darboux transformations of the Jaynes–Cummings Hamiltonian”, J. Phys. A: Math. Gen., 37:43 (2004), 10115–10127 | DOI | MR | Zbl

[6] S. B. Leble, “Metod odevaniya v kvantovykh modelyakh vzaimodeistviya izlucheniya s veschestvom”, TMF, 152:1 (2007), 118–132 | DOI | DOI | MR | Zbl

[7] E. A. Rakhmanov, “Ravnovesnaya mera i raspredelenie nulei ekstremalnykh mnogochlenov diskretnoi peremennoi”, Matem. sb., 187:8 (1996), 109–124 | DOI | DOI | MR | Zbl

[8] A. Borodin, “Riemann–Hilbert problem and discrete Bessel kernel”, Internat. Math. Res. Notices, 2000:9 (2000), 467–494, arXiv: math/9912093 | DOI | Zbl

[9] J. Baik, T. Kriecherbauer, K. T.-R. McLaughlin, P. D. Miller, Discrete orthogonal polynomials: asymptotics and application, Annals of Mathematics Studies, 164, Princeton Univ. Press, Princeton, NJ, 2007 | MR

[10] D. Dai, R. Wong, “Global asymptotics of Krawtchouk polynomials – a Riemann–Hilbert approach”, Chin. Ann. Math. Ser. B, 28:1 (2007), 1–34 | DOI | MR | Zbl

[11] A. I. Aptekarev, D. N. Tulyakov, “Asimptotiki mnogochlenov Meiksnera i yader Kristoffelya–Darbu”, Tr. MMO, 73:1 (2012), 87–132 | DOI | MR | Zbl

[12] G. Sege, Ortogonalnye polinomy, Fizmatgiz, M., 1962 | MR

[13] A. B. J. Kuijlaars, W. Van Assche, “The asymptotic zero distribution of ortogonal polynomials with varying recurrence coefficients”, J. Approx. Theory, 99:1 (1999), 167–197 | DOI | MR | Zbl

[14] A. I. Aptekarev, W. Van Assche, “Asymptotic of discrete orthogonal polynomials and the continuum limit of the Toda lattice”, J. Phys. A: Math. Gen., 34:48 (2001), 10627–10639 | DOI | MR

[15] A. I. Aptekarev, A. Branquinho, F. Marcellán, “Toda-type differential equations for the recurrence coefficients of orthogonal polynomials and Freud transformation”, J. Comput. Appl. Math., 78:1 (1997), 139–160 | DOI | MR | Zbl

[16] A. I. Aptekarev, J. S. Geronimo, W. Van Assche, “Varying weights for orthogonal polynomials with monotonically varying recurrence coefficients”, J. Approx. Theory, 150:2 (2008), 214–238 | DOI | MR | Zbl

[17] A. I. Aptekarev, D. N. Tulyakov, “Glavnyi chlen asimptotiki Plansherelya–Rotakha dlya reshenii rekurrentnykh sootnoshenii”, Matem. sb., 205:12 (2014), 17–40 | DOI | DOI | MR | Zbl

[18] A. I. Aptekarev, V. Kalyagin, López G. Lagomasino, I. A. Rocha, “On the limit behavior of recurrence coefficients for multiple orthogonal polynomials”, J. Approx. Theory, 139:1-2 (2006), 346–370 | DOI | MR | Zbl

[19] A. I. Aptekarev, G. Lopes Lagomasino, I. A. Rocha, “Asimptotika otnosheniya polinomov Ermita–Pade dlya sistem Nikishina”, Matem. sb., 196:8 (2005), 3–20 | DOI | DOI | MR | Zbl

[20] R. S. Varga, Matrix Iterative Analysis, Springer Series in Computational Mathematics, 27, Springer, Berlin, 2000 | DOI | MR | Zbl

[21] E. B. Saff, V. Totik, Logarithmic Potentials with External Fields, Grundlehren Math. Wiss., 316, Springer, Berlin, 1997 | DOI | MR

[22] P. D. Dragnev, E. B. Saff, “Constrained energy problems with applications to orthogonal polynomials of a discrete variable”, J. Anal. Math., 72:1 (1997), 223–259 | DOI | MR | Zbl

[23] A. B. J. Kuijlaars, E. A. Rakhmanov, “Zero distributions for discrete orthogonal polynomials”, J. Comp. Appl. Math., 99:1–2 (1998), 255–274 | DOI | MR

[24] P. Deift, K. T.-R. McLaughlin, A Continuum Limit of the Toda Lattice, Memoirs of the American Mathematical Society, 624, AMS, Providence, RI, 1998 | DOI | MR

[25] V. S. Buyarov, E. A. Rakhmanov, “O semeistvakh mer, ravnovesnykh vo vneshnem pole na veschestvennoi osi”, Matem. sb., 190:6 (1999), 11–22 | DOI | DOI | MR | Zbl

[26] B. Beckermann, “On a conjecture of E. A. Rakhmanov”, Constr. Approx., 16:3 (2000), 427–448 | DOI | MR | Zbl

[27] M. Krawtchouk, “Sur une généralisation des polynomes d'Hermite”, C. R. Acad. Sci. Paris, 189:17 (1929), 620–622 | Zbl