Biorthogonal quantum mechanics for non-Hermitian multimode and multiphoton Jaynes–Cummings models
Teoretičeskaâ i matematičeskaâ fizika, Tome 193 (2017) no. 1, pp. 66-83 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We develop a biorthogonal formalism for non-Hermitian multimode and multiphoton Jaynes–Cummings models. For these models, we define supersymmetric generators, which are especially convenient for diagonalizing the Hamiltonians. The Hamiltonian and its adjoint are expressed in terms of supersymmetric generators having the Lie superalgebra properties. The method consists in using a similarity dressing operator that maps onto spaces suitable for diagonalizing Hamiltonians even in an infinite-dimensional Hilbert space. We then successfully solve the eigenproblems related to the Hamiltonian and its adjoint. For each model, the eigenvalues are real, while the eigenstates do not form a set of orthogonal vectors. We then introduce the biorthogonality formalism to construct a consistent theory.
Keywords: non-Hermitian multimode Jaynes–Cummings Hamiltonians, non-Hermitian multiphoton Jaynes–Cummings Hamiltonians, Lie superalgebra, similarity transformation, biorthogonal quantum mechanics.
@article{TMF_2017_193_1_a4,
     author = {J. V. Hounguevou and F. A. Dossa and G. Y. Avossevou},
     title = {Biorthogonal quantum mechanics for {non-Hermitian} multimode and multiphoton {Jaynes{\textendash}Cummings} models},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {66--83},
     year = {2017},
     volume = {193},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2017_193_1_a4/}
}
TY  - JOUR
AU  - J. V. Hounguevou
AU  - F. A. Dossa
AU  - G. Y. Avossevou
TI  - Biorthogonal quantum mechanics for non-Hermitian multimode and multiphoton Jaynes–Cummings models
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2017
SP  - 66
EP  - 83
VL  - 193
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2017_193_1_a4/
LA  - ru
ID  - TMF_2017_193_1_a4
ER  - 
%0 Journal Article
%A J. V. Hounguevou
%A F. A. Dossa
%A G. Y. Avossevou
%T Biorthogonal quantum mechanics for non-Hermitian multimode and multiphoton Jaynes–Cummings models
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2017
%P 66-83
%V 193
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2017_193_1_a4/
%G ru
%F TMF_2017_193_1_a4
J. V. Hounguevou; F. A. Dossa; G. Y. Avossevou. Biorthogonal quantum mechanics for non-Hermitian multimode and multiphoton Jaynes–Cummings models. Teoretičeskaâ i matematičeskaâ fizika, Tome 193 (2017) no. 1, pp. 66-83. http://geodesic.mathdoc.fr/item/TMF_2017_193_1_a4/

[1] N. Moiseyev, “Quantum theory of resonances: calculating energies, widths and cross-sections by complex scaling”, Phys. Rep., 302:5–6 (1998), 211–293 | DOI

[2] J. Okolowicz, M. Ploszajczak, I. Rotter, “Dynamics of quantum systems embedded in a continuum”, Phys. Rep., 374:4–5 (2003), 271–383 | DOI | MR | Zbl

[3] N. Moiseyev, Non-Hermitian Quantum Mechanics, Cambridge Univ. Press, Cambridge, 2011 | DOI | MR

[4] F. G. Scholtz, H. B. Geyer, F. J. W. Hahne, “Quasi-Hermitian operators in quantum mechanics and the variational principle”, Ann. Phys., 213:1 (1992), 74–101 | DOI | MR | Zbl

[5] H. B. Geyer, W. D. Heiss, F. G. Scholtz, “The physical interpretation of non-Hermitian Hamiltonians and other observables”, Canadian J. Phys., 86 (2008), 1195–1201 | DOI

[6] C. M. Bender, “Making sense of non-Hermitian Hamiltonians”, Rep. Progr. Phys., 70:6 (2007), 947–1018 | DOI | MR

[7] A. Mostafazadeh, “Pseudo-Hermitian representation of quantum mechanics”, Internat. J. Geom. Methods Mod. Phys., 7:7 (2010), 1191–1306 | DOI | MR | Zbl

[8] M. Znojil, “Three-Hilbert-space formulation of quantum mechanics”, SIGMA, 5 (2009), 001, 001, 19 pp. | DOI | MR | Zbl

[9] T. Curtright, L. Mezincescu, “Biorthogonal quantum systems”, J. Math. Phys., 48:9 (2007), 092106, 35 pp. | DOI | MR | Zbl

[10] D. C. Brody, “Biorthogonal quantum mechanics”, J. Phys. A: Math. Theor., 47:3 (2014), 035305, 21 pp. | DOI | MR | Zbl

[11] F. Bagarello, “Transition probabilities for non self-adjoint Hamiltonians in infinite dimensional Hilbert spaces”, Ann. Phys., 362 (2015), 424–435 | DOI | MR | Zbl

[12] F. Bagarello, A. Fring, “Generalized Bogoliubov transformations versus $\mathcal{D}$-pseudo-bosons”, J. Math. Phys., 56:10 (2015), 103508, 10 pp. | DOI | MR | Zbl

[13] F. Bagarello, “Some results on the dynamics and transition probabilities for non self-adjoint Hamiltonians”, Ann. Phys., 356 (2015), 171–184 | DOI | MR | Zbl

[14] F. Bagarello, M. Luttuca, R. Passante, L. Rizzuto, S. Spagnolo, “Non-Hermitian Hamiltonian for a modulated Jaynes–Cummings model with $\mathcal{PT}$ symmetry”, Phys. Rev. A, 91:4 (2015), 042134, 8 pp. | DOI | MR

[15] F. Bagarello, J.-P. Gazeau, F. H. Szafraniec, M. Znojil (eds.), Non-Selfadjoint Operators in Quantum Physics: Mathematical Aspects, John Wiley and Sons, New York, 2015 | DOI | MR

[16] F. Bagarello, “Pseudobosons, Riesz bases, and coherent states”, J. Math. Phys., 51:2 (2010), 023531, 10 pp. | DOI

[17] F. Bagarello, “Pseudo-bosons from Landau levels”, SIGMA, 6 (2010), 093, 9 pp. | DOI | MR

[18] F. Bagarello, “Pseudo-bosons, so far”, Rep. Math. Phys., 68:2 (2011), 175–210 | DOI | MR | Zbl

[19] P. Carbonaro, G. Compagno, F. Persico, “Canonical dressing of atoms by intense radiation fields”, Phys. Lett. A, 73:2 (1979), 97–99 | DOI

[20] J. H. Eberly, N. B. Narozhny, J. J. Sanchez-Mondragon, “Periodic spontaneous collapse and revival in a simple quantum model”, Phys. Rev. Lett., 44:20 (1980), 1323–1326 | DOI | MR

[21] R. Krivec, V. B. Mandelzweig, “Nonvariational calculation of the sticking probability and fusion rate for the $\mu\,dt$ molecular ion”, Phys. Rev. A, 52:1 (1995), 221–226 | DOI

[22] K. Wódkiewicz, P. L. Knight, S. J. Buckle, S. M. Barnett, “Squeezing and superposition states”, Phys. Rev. A, 35:6 (1987), 2567–2577 | DOI | MR

[23] A. Imamolg̃lu, S. E. Harris, “Lasers without inversion: interference of dressed lifetime-broadened states”, Opt. Lett., 14:24 (1989), 1344–1346 | DOI

[24] I. I. Rabi, “On the process of space quantization”, Phys. Rev., 49:4 (1936), 324–328 ; “Space quantization in a gyrating magnetic field”, 51:8 (1937), 652–654 | DOI | Zbl | DOI | Zbl

[25] A. F. Dossa, G. Y. H. Avossevou, “Full spectrum of the two-photon and the two-mode quantum Rabi models”, J. Math. Phys., 55:10 (2014), 102104, 18 pp. | DOI | MR | Zbl

[26] F. Cooper, A. Khare, U. Sukhateme, “Supersymmetry and quantum mechanics”, Phys. Rep., 251:5–6 (1995), 267–385 | DOI | MR

[27] R. Dutt, A. Khare, U. Sukhatme, “Supersymmetry, shape invariance, and exactly solvable potentials”, Am. J. Phys., 56:2 (1988), 163–168 | DOI

[28] H.-Y. Fan, L.-S. Li, “Supersymmetric unitary operator for some generalized Jaynes–Cummings models”, Commun. Theor. Phys., 25:1 (1996), 105–110 | DOI | MR

[29] H.-Y. Fan, “Representation and transformation theory in quantum mechanics”, Progress of Dirac's Symbolic Method, Scientific and Technical Univ. Press, Shanghai, 1997, 181

[30] E. Brian Davies, Linear Operators and their Spectra, Cambridge Studies in Advanced Mathematics, 106, Cambridge Univ. Press, Cambridge, 2007 | DOI | MR | Zbl

[31] P. E. G. Assis, Non-Hermitian Hamiltonians in field theory, PhD Thesis, City Univ. London, London, 2009

[32] H.-X. Lu, X.-Q. Wang, Y.-D. Zhang, “Exact solution for super–Jaynes–Cummings model”, Chinese Phys., 9:5 (2000), 325–328 | DOI

[33] J. Yang, W.-L. Yu, A.-P. Xiang, “Exact solution for Jaynes–Cummings model with bosonic field nonlinearity and strong boson-fermion coupling”, Commun. Theor. Phys., 45:1 (2006), 143–146 | DOI | MR | Zbl

[34] T.-Q. Song, Y.-J. Zhu, “Solving generalized non-degenerate two-mode two-photon Jaynes–Cummings model by supersymmetric unitary transformation”, Commun. Theor. Phys., 38:1 (2002), 85–88 | DOI | MR

[35] H.-X. Lu, X.-Q. Wang, “Multiphoton Jaynes–Cummings model solved via supersymmetric unitary transformation”, Chinese Phys., 9:8 (2000), 568–571 | DOI