@article{TMF_2017_193_1_a4,
author = {J. V. Hounguevou and F. A. Dossa and G. Y. Avossevou},
title = {Biorthogonal quantum mechanics for {non-Hermitian} multimode and multiphoton {Jaynes{\textendash}Cummings} models},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {66--83},
year = {2017},
volume = {193},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2017_193_1_a4/}
}
TY - JOUR AU - J. V. Hounguevou AU - F. A. Dossa AU - G. Y. Avossevou TI - Biorthogonal quantum mechanics for non-Hermitian multimode and multiphoton Jaynes–Cummings models JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2017 SP - 66 EP - 83 VL - 193 IS - 1 UR - http://geodesic.mathdoc.fr/item/TMF_2017_193_1_a4/ LA - ru ID - TMF_2017_193_1_a4 ER -
%0 Journal Article %A J. V. Hounguevou %A F. A. Dossa %A G. Y. Avossevou %T Biorthogonal quantum mechanics for non-Hermitian multimode and multiphoton Jaynes–Cummings models %J Teoretičeskaâ i matematičeskaâ fizika %D 2017 %P 66-83 %V 193 %N 1 %U http://geodesic.mathdoc.fr/item/TMF_2017_193_1_a4/ %G ru %F TMF_2017_193_1_a4
J. V. Hounguevou; F. A. Dossa; G. Y. Avossevou. Biorthogonal quantum mechanics for non-Hermitian multimode and multiphoton Jaynes–Cummings models. Teoretičeskaâ i matematičeskaâ fizika, Tome 193 (2017) no. 1, pp. 66-83. http://geodesic.mathdoc.fr/item/TMF_2017_193_1_a4/
[1] N. Moiseyev, “Quantum theory of resonances: calculating energies, widths and cross-sections by complex scaling”, Phys. Rep., 302:5–6 (1998), 211–293 | DOI
[2] J. Okolowicz, M. Ploszajczak, I. Rotter, “Dynamics of quantum systems embedded in a continuum”, Phys. Rep., 374:4–5 (2003), 271–383 | DOI | MR | Zbl
[3] N. Moiseyev, Non-Hermitian Quantum Mechanics, Cambridge Univ. Press, Cambridge, 2011 | DOI | MR
[4] F. G. Scholtz, H. B. Geyer, F. J. W. Hahne, “Quasi-Hermitian operators in quantum mechanics and the variational principle”, Ann. Phys., 213:1 (1992), 74–101 | DOI | MR | Zbl
[5] H. B. Geyer, W. D. Heiss, F. G. Scholtz, “The physical interpretation of non-Hermitian Hamiltonians and other observables”, Canadian J. Phys., 86 (2008), 1195–1201 | DOI
[6] C. M. Bender, “Making sense of non-Hermitian Hamiltonians”, Rep. Progr. Phys., 70:6 (2007), 947–1018 | DOI | MR
[7] A. Mostafazadeh, “Pseudo-Hermitian representation of quantum mechanics”, Internat. J. Geom. Methods Mod. Phys., 7:7 (2010), 1191–1306 | DOI | MR | Zbl
[8] M. Znojil, “Three-Hilbert-space formulation of quantum mechanics”, SIGMA, 5 (2009), 001, 001, 19 pp. | DOI | MR | Zbl
[9] T. Curtright, L. Mezincescu, “Biorthogonal quantum systems”, J. Math. Phys., 48:9 (2007), 092106, 35 pp. | DOI | MR | Zbl
[10] D. C. Brody, “Biorthogonal quantum mechanics”, J. Phys. A: Math. Theor., 47:3 (2014), 035305, 21 pp. | DOI | MR | Zbl
[11] F. Bagarello, “Transition probabilities for non self-adjoint Hamiltonians in infinite dimensional Hilbert spaces”, Ann. Phys., 362 (2015), 424–435 | DOI | MR | Zbl
[12] F. Bagarello, A. Fring, “Generalized Bogoliubov transformations versus $\mathcal{D}$-pseudo-bosons”, J. Math. Phys., 56:10 (2015), 103508, 10 pp. | DOI | MR | Zbl
[13] F. Bagarello, “Some results on the dynamics and transition probabilities for non self-adjoint Hamiltonians”, Ann. Phys., 356 (2015), 171–184 | DOI | MR | Zbl
[14] F. Bagarello, M. Luttuca, R. Passante, L. Rizzuto, S. Spagnolo, “Non-Hermitian Hamiltonian for a modulated Jaynes–Cummings model with $\mathcal{PT}$ symmetry”, Phys. Rev. A, 91:4 (2015), 042134, 8 pp. | DOI | MR
[15] F. Bagarello, J.-P. Gazeau, F. H. Szafraniec, M. Znojil (eds.), Non-Selfadjoint Operators in Quantum Physics: Mathematical Aspects, John Wiley and Sons, New York, 2015 | DOI | MR
[16] F. Bagarello, “Pseudobosons, Riesz bases, and coherent states”, J. Math. Phys., 51:2 (2010), 023531, 10 pp. | DOI
[17] F. Bagarello, “Pseudo-bosons from Landau levels”, SIGMA, 6 (2010), 093, 9 pp. | DOI | MR
[18] F. Bagarello, “Pseudo-bosons, so far”, Rep. Math. Phys., 68:2 (2011), 175–210 | DOI | MR | Zbl
[19] P. Carbonaro, G. Compagno, F. Persico, “Canonical dressing of atoms by intense radiation fields”, Phys. Lett. A, 73:2 (1979), 97–99 | DOI
[20] J. H. Eberly, N. B. Narozhny, J. J. Sanchez-Mondragon, “Periodic spontaneous collapse and revival in a simple quantum model”, Phys. Rev. Lett., 44:20 (1980), 1323–1326 | DOI | MR
[21] R. Krivec, V. B. Mandelzweig, “Nonvariational calculation of the sticking probability and fusion rate for the $\mu\,dt$ molecular ion”, Phys. Rev. A, 52:1 (1995), 221–226 | DOI
[22] K. Wódkiewicz, P. L. Knight, S. J. Buckle, S. M. Barnett, “Squeezing and superposition states”, Phys. Rev. A, 35:6 (1987), 2567–2577 | DOI | MR
[23] A. Imamolg̃lu, S. E. Harris, “Lasers without inversion: interference of dressed lifetime-broadened states”, Opt. Lett., 14:24 (1989), 1344–1346 | DOI
[24] I. I. Rabi, “On the process of space quantization”, Phys. Rev., 49:4 (1936), 324–328 ; “Space quantization in a gyrating magnetic field”, 51:8 (1937), 652–654 | DOI | Zbl | DOI | Zbl
[25] A. F. Dossa, G. Y. H. Avossevou, “Full spectrum of the two-photon and the two-mode quantum Rabi models”, J. Math. Phys., 55:10 (2014), 102104, 18 pp. | DOI | MR | Zbl
[26] F. Cooper, A. Khare, U. Sukhateme, “Supersymmetry and quantum mechanics”, Phys. Rep., 251:5–6 (1995), 267–385 | DOI | MR
[27] R. Dutt, A. Khare, U. Sukhatme, “Supersymmetry, shape invariance, and exactly solvable potentials”, Am. J. Phys., 56:2 (1988), 163–168 | DOI
[28] H.-Y. Fan, L.-S. Li, “Supersymmetric unitary operator for some generalized Jaynes–Cummings models”, Commun. Theor. Phys., 25:1 (1996), 105–110 | DOI | MR
[29] H.-Y. Fan, “Representation and transformation theory in quantum mechanics”, Progress of Dirac's Symbolic Method, Scientific and Technical Univ. Press, Shanghai, 1997, 181
[30] E. Brian Davies, Linear Operators and their Spectra, Cambridge Studies in Advanced Mathematics, 106, Cambridge Univ. Press, Cambridge, 2007 | DOI | MR | Zbl
[31] P. E. G. Assis, Non-Hermitian Hamiltonians in field theory, PhD Thesis, City Univ. London, London, 2009
[32] H.-X. Lu, X.-Q. Wang, Y.-D. Zhang, “Exact solution for super–Jaynes–Cummings model”, Chinese Phys., 9:5 (2000), 325–328 | DOI
[33] J. Yang, W.-L. Yu, A.-P. Xiang, “Exact solution for Jaynes–Cummings model with bosonic field nonlinearity and strong boson-fermion coupling”, Commun. Theor. Phys., 45:1 (2006), 143–146 | DOI | MR | Zbl
[34] T.-Q. Song, Y.-J. Zhu, “Solving generalized non-degenerate two-mode two-photon Jaynes–Cummings model by supersymmetric unitary transformation”, Commun. Theor. Phys., 38:1 (2002), 85–88 | DOI | MR
[35] H.-X. Lu, X.-Q. Wang, “Multiphoton Jaynes–Cummings model solved via supersymmetric unitary transformation”, Chinese Phys., 9:8 (2000), 568–571 | DOI