@article{TMF_2017_193_1_a3,
author = {M. Gianfreda and G. Landolfi},
title = {Nonautonomous {Hamiltonian} quantum systems, operator equations, and representations of {the~Bender{\textendash}Dunne} {Weyl-ordered} basis under time-dependent canonical transformationstransformations},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {41--65},
year = {2017},
volume = {193},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2017_193_1_a3/}
}
TY - JOUR AU - M. Gianfreda AU - G. Landolfi TI - Nonautonomous Hamiltonian quantum systems, operator equations, and representations of the Bender–Dunne Weyl-ordered basis under time-dependent canonical transformationstransformations JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2017 SP - 41 EP - 65 VL - 193 IS - 1 UR - http://geodesic.mathdoc.fr/item/TMF_2017_193_1_a3/ LA - ru ID - TMF_2017_193_1_a3 ER -
%0 Journal Article %A M. Gianfreda %A G. Landolfi %T Nonautonomous Hamiltonian quantum systems, operator equations, and representations of the Bender–Dunne Weyl-ordered basis under time-dependent canonical transformationstransformations %J Teoretičeskaâ i matematičeskaâ fizika %D 2017 %P 41-65 %V 193 %N 1 %U http://geodesic.mathdoc.fr/item/TMF_2017_193_1_a3/ %G ru %F TMF_2017_193_1_a3
M. Gianfreda; G. Landolfi. Nonautonomous Hamiltonian quantum systems, operator equations, and representations of the Bender–Dunne Weyl-ordered basis under time-dependent canonical transformationstransformations. Teoretičeskaâ i matematičeskaâ fizika, Tome 193 (2017) no. 1, pp. 41-65. http://geodesic.mathdoc.fr/item/TMF_2017_193_1_a3/
[1] C. M. Bender, G. V. Dunne, “Exact solutions to operator differential equations”, Phys. Rev. D, 40:8 (1989), 2739–2742 | DOI | MR
[2] E. A. Galapon, A. Villanueva, “Quantum first time-of-arrival operators”, J. Phys. A: Math. Theor., 41 (2008), 455302, 31 pp. | DOI | MR | Zbl
[3] H.-Y. Fan, H. R. Zaidi, J. R. Klauder, “New approach for calculating the normally ordered form of squeeze operators”, Phys. Rev. D, 35 (1987), 1831 ; H.-Y. Fan, Y. Fan, “Representations of two-mode squeezing transformations”, Phys. Rev. A, 54 (1996), 958 | DOI | DOI
[4] H.-Y. Fan, Y. Fan, “Newton–Leibniz integration for ket-bra operators in quantum mechanics and derivation of entangled state representation”, Ann. Phys., 321:2 (2006), 480–494 ; H.-Y. Fan, “Newton–Leibniz integration for ket-bra operators in quantum mechanics (IV) – Integrations within Weyl ordered product of operators and their applications”, 323:2 (2008), 500–526 | DOI | MR | DOI
[5] C. M. Bender, M. Gianfreda, “Matrix representation of the time operator”, J. Math. Phys., 53:6 (2012), 062102, 20 pp. | DOI | MR | Zbl
[6] C. M. Bender, M. Gianfreda, “Mariagiovanna Nonuniqueness of the $\mathscr C$ operator in $\mathscr{PT}$-symmetric quantum mechanics”, J. Phys. A: Math. Theor., 46:27 (2013), 275306, 18 pp. | DOI | MR | Zbl
[7] E. A. Galapon, F. Delgado, J. Gonzalo Muga, I. Egusquiza, “Transition from discrete to continuous time-of-arrival distribution for a quantum particle”, Phys. Rev. A, 72:4 (2005), 042107, 8 pp. | DOI | MR
[8] A. Mostafazadeh, “Time-dependent diffeomorphisms as quantum canonical transformations and the time-dependent harmonic oscillator”, J. Phys. A: Math. Gen., 31 (1998), 6495 | MR
[9] B. J. Leimkuhler, C. R. Sweet, “Hamiltonian formulation for recursive multiple thermostats in a common timescale”, SIAM J. Appl. Dyn. Syst., 4:1 (2005), 187–216 ; S. Bond, B. Laird, B. Leimkuhler, “The Nosé–Poincaré method for constant temperature molecular dynamics. Computational molecular biophysics”, J. Comput. Phys., 151 (1999), 114 ; S. Nosé, “An Improved symplectic integrator for Nosé–Poincaré thermostat”, J. Phys. Soc. Japan, 70:1 (2001), 75–77 | MR | DOI | MR | DOI
[10] G. Landolfi, “Weyl-ordered series form for the angle variable of the time-dependent oscillator”, J. Phys. A: Math. Gen., 41:18 (2008), 185302, 11 pp. | DOI | MR | Zbl
[11] M. A. Lohe, A. Thilagam, “Weyl-ordered polynomials in fractional-dimensional quantum mechanics”, J. Phys. A: Math. Gen., 38:2 (2005), 461–483 | DOI | MR
[12] J. Struckmeier, C. Riedel, “Canonical transformations and exact invariants for time-dependent Hamiltonian systems”, Ann. Phys., 11:1 (2002), 15–38 | 3.0.CO;2-0 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR
[13] M. Maamache, “Unitary transformation approach to the exact solution for a class of time-dependent nonlinear Hamiltonian systems”, J. Math. Phys., 39:1 (1998), 161–169 | DOI | MR
[14] A. Geralico, G. Landolfi, G. Ruggeri, G. Soliani, “Novel approach to the study of quantum effects in the early Universe”, Phys. Rev. D, 69:4 (2004), 043504, 10 pp. | DOI
[15] C. M. Bender, G. V. Dunne, “Polynomials and operator orderings”, J. Math. Phys., 29:8 (1988), 1727–1731 | MR
[16] M. Gianfreda, G. Landolfi, “Spectral problems for the Weyl-ordered form of operators $\bigl(\frac{1}{p}\bigr)^n\hat q^n$”, J. Math. Phys., 52:12 (2011), 122104, 21 pp. | DOI | MR | Zbl
[17] J. Bunao, E. A. Galapon, “The Bender–Dunne basis operators as Hilbert space operators”, J. Math. Phys., 55:2 (2014), 022102, 18 pp. | DOI | MR | Zbl
[18] A. O. Barut, A. Böhm, “Dynamical groups and mass formulas”, Phys. Rev. B, 139:4 (1965), 1107–1112 | DOI
[19] Y. Dothan, M. Gell-Mann, Y. Ne'eman, “Series of hadron energy levels as representations of non-compact groups”, Phys. Lett., 17 (1965), 148 ; Y. Dothan, “Finite-dimensional spectrum-generating algebras”, Phys. Rev. D, 2 (1970), 2944–2954 | DOI | MR | DOI | MR | Zbl
[20] P. Winternitz, I. Yurdusen, J. Math. Phys., 47:10 (2006), 103509, 10 pp. ; W. Miller, Jr., S. Post, P. Winternitz, J. Phys. A: Math. Theor., 46:42 (2013), 423001, 97 pp. | DOI | MR | Zbl | DOI | MR | Zbl
[21] Y. S. Kim, E. P. Wigner, “Canonical transformation in quantum mechanics”, Amer. J. Phys, 58:5 (1990), 449–451 ; A. J. Bordner, “Linear canonical transformations in quantum mechanics”, J. Math. Phys., 38:7 (1997), 3427–3434 ; K.-H. Yeon, D. F. Walls, C. I. Um, T. F. George, L. N. Pandey, “Quantum correspondence for linear canonical transformations on general Hamiltonian systems”, Phys. Rev. A, 58:3 (1998), 1765–1774 ; T. Hakiog̃lu, “Linear canonical transformations and quantum phase: a unified canonical and algebraic approach”, J. Phys. A: Math. Gen., 32:22 (1999), 4111–4130 | DOI | DOI | MR | DOI | MR