Nonautonomous Hamiltonian quantum systems, operator equations, and representations of the Bender–Dunne Weyl-ordered basis under time-dependent canonical transformationstransformations
Teoretičeskaâ i matematičeskaâ fizika, Tome 193 (2017) no. 1, pp. 41-65 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We solve the problem of integrating operator equations for the dynamics of nonautonomous quantum systems by using time-dependent canonical transformations. The studied operator equations essentially reproduce the classical integrability conditions at the quantum level in the basic cases of one-dimensional nonautonomous dynamical systems. We seek solutions in the form of operator series in the Bender–Dunne basis of pseudodifferential operators. Together with this problem, we consider quantum canonical transformations. The minimal solution of the operator equation in the representation of the basis at a fixed time corresponds to the lowest-order contribution of the solution obtained as a result of applying a canonical linear transformation to the basis elements.
Keywords: Weyl ordering, Bender–Dunne operator basis, operator equation, time-dependent quantum system, quantum canonical transformation.
@article{TMF_2017_193_1_a3,
     author = {M. Gianfreda and G. Landolfi},
     title = {Nonautonomous {Hamiltonian} quantum systems, operator equations, and representations of {the~Bender{\textendash}Dunne} {Weyl-ordered} basis under time-dependent canonical transformationstransformations},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {41--65},
     year = {2017},
     volume = {193},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2017_193_1_a3/}
}
TY  - JOUR
AU  - M. Gianfreda
AU  - G. Landolfi
TI  - Nonautonomous Hamiltonian quantum systems, operator equations, and representations of the Bender–Dunne Weyl-ordered basis under time-dependent canonical transformationstransformations
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2017
SP  - 41
EP  - 65
VL  - 193
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2017_193_1_a3/
LA  - ru
ID  - TMF_2017_193_1_a3
ER  - 
%0 Journal Article
%A M. Gianfreda
%A G. Landolfi
%T Nonautonomous Hamiltonian quantum systems, operator equations, and representations of the Bender–Dunne Weyl-ordered basis under time-dependent canonical transformationstransformations
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2017
%P 41-65
%V 193
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2017_193_1_a3/
%G ru
%F TMF_2017_193_1_a3
M. Gianfreda; G. Landolfi. Nonautonomous Hamiltonian quantum systems, operator equations, and representations of the Bender–Dunne Weyl-ordered basis under time-dependent canonical transformationstransformations. Teoretičeskaâ i matematičeskaâ fizika, Tome 193 (2017) no. 1, pp. 41-65. http://geodesic.mathdoc.fr/item/TMF_2017_193_1_a3/

[1] C. M. Bender, G. V. Dunne, “Exact solutions to operator differential equations”, Phys. Rev. D, 40:8 (1989), 2739–2742 | DOI | MR

[2] E. A. Galapon, A. Villanueva, “Quantum first time-of-arrival operators”, J. Phys. A: Math. Theor., 41 (2008), 455302, 31 pp. | DOI | MR | Zbl

[3] H.-Y. Fan, H. R. Zaidi, J. R. Klauder, “New approach for calculating the normally ordered form of squeeze operators”, Phys. Rev. D, 35 (1987), 1831 ; H.-Y. Fan, Y. Fan, “Representations of two-mode squeezing transformations”, Phys. Rev. A, 54 (1996), 958 | DOI | DOI

[4] H.-Y. Fan, Y. Fan, “Newton–Leibniz integration for ket-bra operators in quantum mechanics and derivation of entangled state representation”, Ann. Phys., 321:2 (2006), 480–494 ; H.-Y. Fan, “Newton–Leibniz integration for ket-bra operators in quantum mechanics (IV) – Integrations within Weyl ordered product of operators and their applications”, 323:2 (2008), 500–526 | DOI | MR | DOI

[5] C. M. Bender, M. Gianfreda, “Matrix representation of the time operator”, J. Math. Phys., 53:6 (2012), 062102, 20 pp. | DOI | MR | Zbl

[6] C. M. Bender, M. Gianfreda, “Mariagiovanna Nonuniqueness of the $\mathscr C$ operator in $\mathscr{PT}$-symmetric quantum mechanics”, J. Phys. A: Math. Theor., 46:27 (2013), 275306, 18 pp. | DOI | MR | Zbl

[7] E. A. Galapon, F. Delgado, J. Gonzalo Muga, I. Egusquiza, “Transition from discrete to continuous time-of-arrival distribution for a quantum particle”, Phys. Rev. A, 72:4 (2005), 042107, 8 pp. | DOI | MR

[8] A. Mostafazadeh, “Time-dependent diffeomorphisms as quantum canonical transformations and the time-dependent harmonic oscillator”, J. Phys. A: Math. Gen., 31 (1998), 6495 | MR

[9] B. J. Leimkuhler, C. R. Sweet, “Hamiltonian formulation for recursive multiple thermostats in a common timescale”, SIAM J. Appl. Dyn. Syst., 4:1 (2005), 187–216 ; S. Bond, B. Laird, B. Leimkuhler, “The Nosé–Poincaré method for constant temperature molecular dynamics. Computational molecular biophysics”, J. Comput. Phys., 151 (1999), 114 ; S. Nosé, “An Improved symplectic integrator for Nosé–Poincaré thermostat”, J. Phys. Soc. Japan, 70:1 (2001), 75–77 | MR | DOI | MR | DOI

[10] G. Landolfi, “Weyl-ordered series form for the angle variable of the time-dependent oscillator”, J. Phys. A: Math. Gen., 41:18 (2008), 185302, 11 pp. | DOI | MR | Zbl

[11] M. A. Lohe, A. Thilagam, “Weyl-ordered polynomials in fractional-dimensional quantum mechanics”, J. Phys. A: Math. Gen., 38:2 (2005), 461–483 | DOI | MR

[12] J. Struckmeier, C. Riedel, “Canonical transformations and exact invariants for time-dependent Hamiltonian systems”, Ann. Phys., 11:1 (2002), 15–38 | 3.0.CO;2-0 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR

[13] M. Maamache, “Unitary transformation approach to the exact solution for a class of time-dependent nonlinear Hamiltonian systems”, J. Math. Phys., 39:1 (1998), 161–169 | DOI | MR

[14] A. Geralico, G. Landolfi, G. Ruggeri, G. Soliani, “Novel approach to the study of quantum effects in the early Universe”, Phys. Rev. D, 69:4 (2004), 043504, 10 pp. | DOI

[15] C. M. Bender, G. V. Dunne, “Polynomials and operator orderings”, J. Math. Phys., 29:8 (1988), 1727–1731 | MR

[16] M. Gianfreda, G. Landolfi, “Spectral problems for the Weyl-ordered form of operators $\bigl(\frac{1}{p}\bigr)^n\hat q^n$”, J. Math. Phys., 52:12 (2011), 122104, 21 pp. | DOI | MR | Zbl

[17] J. Bunao, E. A. Galapon, “The Bender–Dunne basis operators as Hilbert space operators”, J. Math. Phys., 55:2 (2014), 022102, 18 pp. | DOI | MR | Zbl

[18] A. O. Barut, A. Böhm, “Dynamical groups and mass formulas”, Phys. Rev. B, 139:4 (1965), 1107–1112 | DOI

[19] Y. Dothan, M. Gell-Mann, Y. Ne'eman, “Series of hadron energy levels as representations of non-compact groups”, Phys. Lett., 17 (1965), 148 ; Y. Dothan, “Finite-dimensional spectrum-generating algebras”, Phys. Rev. D, 2 (1970), 2944–2954 | DOI | MR | DOI | MR | Zbl

[20] P. Winternitz, I. Yurdusen, J. Math. Phys., 47:10 (2006), 103509, 10 pp. ; W. Miller, Jr., S. Post, P. Winternitz, J. Phys. A: Math. Theor., 46:42 (2013), 423001, 97 pp. | DOI | MR | Zbl | DOI | MR | Zbl

[21] Y. S. Kim, E. P. Wigner, “Canonical transformation in quantum mechanics”, Amer. J. Phys, 58:5 (1990), 449–451 ; A. J. Bordner, “Linear canonical transformations in quantum mechanics”, J. Math. Phys., 38:7 (1997), 3427–3434 ; K.-H. Yeon, D. F. Walls, C. I. Um, T. F. George, L. N. Pandey, “Quantum correspondence for linear canonical transformations on general Hamiltonian systems”, Phys. Rev. A, 58:3 (1998), 1765–1774 ; T. Hakiog̃lu, “Linear canonical transformations and quantum phase: a unified canonical and algebraic approach”, J. Phys. A: Math. Gen., 32:22 (1999), 4111–4130 | DOI | DOI | MR | DOI | MR