Analysis of solutions of a nonlinear scalar field differential equation
Teoretičeskaâ i matematičeskaâ fizika, Tome 193 (2017) no. 1, pp. 25-40 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider a nonlinear differential equation arising in mathematical models of elementary particle theory. For this equation, we examine questions of the extendability of solutions, the boundedness of solutions at infinity, and the search for new conditions for the existence of a positive particle-like solution.
Keywords: nonlinear scalar field differential equation, solution extendibility, solution bounded at infinity, particle-like solution.
@article{TMF_2017_193_1_a2,
     author = {\`E. M. Muhamadiev and A. N. Naimov},
     title = {Analysis of solutions of a~nonlinear scalar field differential equation},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {25--40},
     year = {2017},
     volume = {193},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2017_193_1_a2/}
}
TY  - JOUR
AU  - È. M. Muhamadiev
AU  - A. N. Naimov
TI  - Analysis of solutions of a nonlinear scalar field differential equation
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2017
SP  - 25
EP  - 40
VL  - 193
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2017_193_1_a2/
LA  - ru
ID  - TMF_2017_193_1_a2
ER  - 
%0 Journal Article
%A È. M. Muhamadiev
%A A. N. Naimov
%T Analysis of solutions of a nonlinear scalar field differential equation
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2017
%P 25-40
%V 193
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2017_193_1_a2/
%G ru
%F TMF_2017_193_1_a2
È. M. Muhamadiev; A. N. Naimov. Analysis of solutions of a nonlinear scalar field differential equation. Teoretičeskaâ i matematičeskaâ fizika, Tome 193 (2017) no. 1, pp. 25-40. http://geodesic.mathdoc.fr/item/TMF_2017_193_1_a2/

[1] Z. Nehari, “On a nonlinear differential equation arising in nuclear physics”, Proc Roy. Irish Acad. A, 62:9 (1963), 117–135; РЖМат, 1964, 2Б463 | MR

[2] E. P. Zhidkov, V. P. Shirikov, “Ob odnoi kraevoi zadache dlya obyknovennykh differentsialnykh uravnenii vtorogo poryadka”, Zhurn. vychisl. matem. i matem. fiz., 4:5 (1964), 804–816 | DOI | MR | Zbl

[3] I. V. Amirkhanov, E. P. Zhidkov, G. I. Makarenko, Dostotachnoe uslovie suschestvovaniya polozhitelnogo chastitsepodobnogo resheniya nelineinogo uravneniya skalyarnogo polya, Coobscheniya OIYaI R5-11705, OIYaI, Dubna, 1978

[4] I. T. Kiguradze, B. L. Shekhter, “Singulyarnye kraevye zadachi dlya obyknovennykh differentsialnykh uravnenii vtorogo poryadka”, Itogi nauki i tekhn. Ser. Sovrem. probl. matem. Nov. dostizh., 30 (1987), 105–201 | MR | Zbl

[5] E. M. Mukhamadiev, A. N. Naimov, “Ob ogranichennykh resheniyakh odnogo klassa nelineinykh obyknovennykh differentsialnykh uravnenii”, Matem. sb., 202:9 (2011), 121–134 | DOI | DOI | MR | Zbl

[6] M. A. Krasnoselskii, P. P. Zabreiko, Geometricheskie metody nelineinogo analiza, Nauka, M., 1975 | DOI | MR | MR | Zbl

[7] S. I. Pokhozhaev, “O metode rassloeniya resheniya nelineinykh kraevykh zadach”, Tr. MIAN, 192 (1990), 146–163 | MR | Zbl

[8] P. E. Zhidkov, “O suschestvovanii schetnogo mnozhestva reshenii v odnoi zadache teorii polyarona”, Matem. sb., 183:2 (1992), 102–111 | DOI | MR | Zbl

[9] F. Khartman, Obyknovennye differentsialnye uravneniya, Mir, M., 1970 | MR | MR | Zbl